Glycosphingolipid depletion in fabry disease lymphoblasts with potent inhibitors of glucosylceramide synthase. (1/20)

BACKGROUND: Fabry disease is an inherited X-linked disorder resulting in the loss of activity of the lysosomal hydrolase alpha-galactosidase A and causing the clinical manifestations of renal failure, cerebral vascular disease, and myocardial infarction. The phenotypic expression of this disorder is manifest by the accumulation of glycosphingolipids containing alpha-galactosyl linkages, most prominently globotriaosylceramide. METHODS: Based on quantitative structure activity studies, we recently reported two newly designed glucosylceramide synthase inhibitors based on 1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4). These inhibitors, 4'-hydroxy-P4 and ethylenedioxy-P4, were evaluated for their ability to deplete globotriaosylceramide and other glucosylceramide-based lipids in Fabry lymphocytes and were compared with N-butyldeoxynojirimycin, another reported glucosylceramide synthase inhibitor. RESULTS: Concentrations as low as 10 nmol/L of 4'-hydroxy-P4 and ethylenedioxy-P4 resulted in 70 and 80% depletion, respectively, of globotriaosylceramide, with maximal depletion occurring at three days of treatment. There was no impairment of cell growth. In contrast, N-butyldeoxynojirimycin only minimally lowered globotriaosylceramide levels, even at concentrations as high as 10 micromol/L. Globotriaosylceramide depletion was confirmed by the loss of binding of FITC-conjugated verotoxin B subunit to the lymphoblasts. CONCLUSIONS: These findings suggest that selective glucosylceramide synthase inhibitors are highly effective in the depletion of globotriaosylceramide from Fabry cell lines. We suggest that these compounds have potential therapeutic utility in the treatment of Fabry disease.  (+info)

Modifications of glycosphingolipid profile and synthesis in normal rat fibroblasts and in syngeneic neoplastic cells at different subculture stages. (2/20)

Glycosphingolipids are plasma membrane macromolecules involved in diversified recognition functions on the cell surface resulting in modulation of cell adhesion and differentiation. As the in vitro cellular system of the neoplastic cell line SGS/4A and syngeneic normal fibroblasts (FG) represents a useful tool for studies on molecular mechanisms regulating cell adhesion, neoplastic transformation and cellular ageing, we studied the changes of glycosphingolipid and of the enzymes involved in their metabolism in both cultured cells at different subculture stages. The FG subculture progression induces a drastic decrease of total glycosphingolipid content with consistent alterations in the molecular composition. In particular, a significant decrease of GM(3), a slight increase of GD(1a), the disappearance of 'b'-series gangliosides and the drastic reduction of triosylceramides were observed. On the contrary, the increasing number of SGS/4A subcultures, characterized by a specific and different glycosphingolipid composition as compared with FG cells, does not cause modifications. Although glycosyltransferase activity levels quite well parallel the glycosphingolipid patterns and can account for the noted variations, the mRNA expression analysis of two glycosyltransferases suggests that the in vitro cell ageing of normal rat fibroblasts causes drastic changes in the glycosphingolipid profile through the regulation, at either the transcriptional or post-translational level, of some biosynthetic enzymes.  (+info)

Occurrence of ceramides and neutral glycolipids with unusual long-chain base composition in purified rat liver mitochondria. (3/20)

The free ceramide content of rat liver mitochondria was found to be 1.7 nmol/mg protein and outer membranes contained a three-fold higher concentration than inner membranes. The mitochondrial content in neutral glycolipids was 0.6 nmol/mg protein. The long-chain bases found in free ceramides were d18:1 sphingosine, d18:0 3-ketosphinganine and t21:1 phytosphingosine in increasing order. In contrast, 3-ketosphinganine was the only base of glucosylceramide and lactosylceramide of inner membranes, whereas d18:1 sphingosine was the major long-chain base of glucosylceramide of outer membranes.  (+info)

Neutral glycosphingolipid-dependent inactivation of coagulation factor Va by activated protein C and protein S. (4/20)

To test whether neutral glycosphingolipids can serve as anticoagulant cofactors, the effects of incorporation of neutral glycosphingolipids into phospholipid vesicles on anticoagulant and procoagulant reactions were studied. Glucosylceramide (GlcCer), lactosylceramide (LacCer), and globotriaosylceramide (Gb(3)Cer) in vesicles containing phosphatidylserine (PS) and phosphatidylcholine (PC) dose dependently enhanced factor Va inactivation by the anticoagulant factors, activated protein C (APC) and protein S. Addition of GlcCer to PC/PS vesicles enhanced protein S-dependent APC cleavage in factor Va at Arg-506 by 13-fold, whereas PC/PS vesicles alone minimally affected protein S enhancement of this reaction. Incorporation into PC/PS vesicles of GlcCer, LacCer, or Gb(3)Cer, but not galactosylceramide or globotetraosylceramide, dose dependently prolonged factor Xa-1-stage clotting times of normal plasma in the presence of added APC without affecting baseline clotting times in the absence of APC, showing that certain neutral glycosphingolipids enhance anticoagulant but not procoagulant reactions in plasma. Thus, certain neutral glycosphingolipids (e.g. GlcCer, LacCer, and Gb(3)Cer) can enhance anticoagulant activity of APC/protein S by mechanisms that are distinctly different from those of phospholipids alone. We speculate that under some circumstances certain neutral glycosphingolipids either in lipoprotein particles or in cell membranes may help form antithrombotic microdomains that might enhance down-regulation of thrombin by APC in vivo.  (+info)

Aminopropyl solid phase extraction and 2 D TLC of neutral glycosphingolipids and neutral lysoglycosphingolipids. (5/20)

Methods for isolation of neutral lysoglycosphingolipids (n-lyso-GSLs) such as glucosylsphingosine and galactosylsphingosine normally involve mild alkaline or acid hydrolysis followed by multiple chromatography steps, yielding relatively low recoveries of n-lyso-GSLs and neutral glycosphingolipids (n-GSLs). We now describe a new technique for isolating these compounds using one chromatography step, resulting in quantitative recovery of n-GSLs and n-lyso-GSLs. Lipids are extracted using a modified Folch procedure in which recovery is optimized by reextracting the Folch upper phase with water-saturated butanol. The extract is applied to an aminopropyl solid phase column from which both n-GSLs and n-lyso-GSLs elute in the same fraction. Separation is achieved using a new two-dimensional thin-layer chromatography procedure. The usefulness of this technique for biological samples was tested by examining Glc[4,5-(3)H]ceramide and Glc[4,5-(3)H]sphingosine accumulation in metabolically-labeled neurons treated with an inhibitor of lysosomal glucocerebrosidase. Accurate quantification of both lipids was obtained with Glc[4,5-(3)H]ceramide and Glc[4,5-(3)H]sphingosine accumulating at levels of 20 nmol/mg DNA and 40 pmol/mg DNA, respectively. This simple and rapid technique can therefore be used for the analysis of lyso-GSLs and GSLs in the same tissue, which may permit the determination of their metabolic pathways in normal and in pathological tissues, such as those taken from Gaucher and Krabbe's disease patients.  (+info)

Simultaneous quantification of lyso-neutral glycosphingolipids and neutral glycosphingolipids by N-acetylation with [3H]acetic anhydride. (6/20)

We describe a new method that permits quantification in the pmol to nmol range of three lyso-neutral glycosphingolipids (lyso-n-GSLs), glucosylsphingosine (GlcSph), galactosylsphingosine (GalSph), and lactosylsphingosine, in the same sample as neutral glycosphingolipids (n-GSLs). Lyso-n-GSLs and n-GSLs are initially obtained from a crude lipid extract using Sephadex G25 chromatography, followed by their isolation in one fraction, which is devoid of other contaminating lipids, by aminopropyl solid-phase chromatography. Lyso-n-GSLs and n-GSLs are subsequently separated from one another by weak cation exchange chromatography. N-GSLs are then deacylated by strong alkaline hydrolysis, and the N-deacylated-GSLs and lyso-n-GSLs are subsequently N-acetylated using [3H]acetic anhydride. An optimal concentration of 5 mM acetic anhydride was established, which gave >95% N-acetylation. We demonstrate the usefulness of this technique by showing an approximately 40-fold increase of both GlcSph and glucosylceramide in brain tissue from a glucocerebrosidase-deficient mouse, as well as significant lactosylceramide accumulation. The application and optimization of this technique for lyso-n-GSLs and lyso-GSLs will permit their quantification in small amounts of biological tissues, particularly in the GSL storage diseases, such as Gaucher and Krabbe's disease, in which GlcSph and GalSph, respectively, accumulate.  (+info)

Role of multiple drug resistance protein 1 in neutral but not acidic glycosphingolipid biosynthesis. (7/20)

Transfection studies have implicated the multiple drug resistance pump, MDR1, as a glucosyl ceramide translocase within the Golgi complex (Lala, P., Ito, S., and Lingwood, C. A. (2000) J. Biol. Chem. 275, 6246-6251). We now show that MDR1 inhibitors, cyclosporin A or ketoconazole, inhibit neutral glycosphingolipid biosynthesis in 11 of 12 cell lines tested. The exception, HeLa cells, do not express MDR1. Microsomal lactosyl ceramide and globotriaosyl ceramide synthesis from endogenous or exogenously added liposomal glucosyl ceramide was inhibited by cyclosporin A, consistent with a direct role for MDR1/glucosyl ceramide translocase activity in their synthesis. In contrast, cellular ganglioside synthesis in the same cells, was unaffected by MDR1 inhibition, suggesting neutral and acid glycosphingolipids are synthesized from distinct precursor glycosphingolipid pools. Metabolic labeling in wild type and knock-out (MDR1a, 1b, MRP1) mouse fibroblasts showed the same loss of neutral glycosphingolipid (glucosyl ceramide, lactosyl ceramide) but not ganglioside (GM3) synthesis, confirming the proposed role for MDR1 translocase activity. Cryo-immunoelectron microscopy showed MDR1 was predominantly intracellular, largely in rab6-containing Golgi vesicles and Golgi cisternae, the site of glycosphingolipid synthesis. These studies identify MDR1 as the major glucosyl ceramide flippase required for neutral glycosphingolipid anabolism and demonstrate a previously unappreciated dichotomy between neutral and acid glycosphingolipid synthesis.  (+info)

Detection of new anti-neutral glycosphingolipids antibodies and their effects on Trk neurotrophin receptors. (8/20)

We screened sera from patients with various neurological disorders for the presence of anti-neutral glycosphingolipids antibodies and only found them in sera from relapsing polychondritis with limbic encephalitis patients. Neutral glycosphingolipids are resident in membrane lipid rafts where high affinity nerve growth factor (NGF) receptor, Trk is co-localized. Therefore, we examined whether these antibodies influence the action of NGF in NGF-responsive cells. The results strongly suggest that these antibodies enhance NGF-induced Trk autophosphorylation and neurite outgrowth as well as neurofilament M expression. These data strongly indicate that these anti-neutral glycosphingolipids antibodies have a functional impact on NGF-Trk-mediated intracellular signal transduction pathway.  (+info)