Recent advances in pathophysiology and treatment of spinal cord injury. (25/507)

Thirty years ago, patients with spinal cord injury (SCI) and their families were told "nothing can be done" to improve function. Since the SCI patient population is reaching normal life expectancy through better health care, it has become an obviously worthwhile enterprise to devote considerable research effort to SCI. Targets for intervention in SCI toward improved function have been identified using basic research approaches and can be simplified into a list: (1) reduction of edema and free-radical production, (2) rescue of neural tissue at risk of dying in secondary processes such as abnormally high extracellular glutamate concentrations, (3) control of inflammation, (4) rescue of neuronal/glial populations at risk of continued apoptosis, (5) repair of demyelination and conduction deficits, (6) promotion of neurite growth through improved extracellular environment, (7) cell replacement therapies, (8) efforts to bridge the gap with transplantation approaches, (9) efforts to retrain and relearn motor tasks, (10) restoration of lost function by electrical stimulation, and (11) relief of chronic pain syndromes. Currently, over 70 clinical trials are in progress worldwide. Consequently, in this millennium, unlike in the last, no SCI patient will have to hear "nothing can be done."  (+info)

Integrating recent advances in neuroscience into undergraduate neuroscience and physiology courses. (26/507)

Neuroscience has enjoyed tremendous growth over the past 20 years, including a substantial increase in the number of neuroscience departments, programs, and courses at the undergraduate level. To meet the need of new neuroscience courses, there has also been growth in the number of introductory neuroscience textbooks designed for undergraduates. However, textbooks typically trail current knowledge by five to ten years, especially in neuroscience where our understanding is increasing rapidly. Consequently, it is often important to supplement neuroscience and physiology textbooks with information about recent findings in neuroscience. To design supplementary educational material, it is essential first to identify the educational objectives of the program and the characteristics of the learners, which can differ dramatically between undergraduate and graduate or professional students. Four principles that may serve the selection and design of supplementary material for undergraduate neuroscience and physiology courses are that (1) material must be interesting to the undergraduates, (2) material should reinforce previously learned concepts, (3) students must be adequately prepared, and (4) the teacher and student must have sufficient appropriate resources.  (+info)

Efficient validation of teaching and learning using multiple-choice exams. (27/507)

One purpose of this study was to quantify, by means of single-format, multiple-choice questions at the beginning and end of the course, the extent to which first-year medical students learn neuroscience material from an introductory course in their curriculum. Compared with their precourse test performance (mean = 41.8%), collectively, the students nearly doubled their grade by the end of the course (mean = 81.4%). Their scores in subcategories of the material improved in inverse proportion to what they knew initially. A second goal was to evaluate a two-dimensional, computer-generated matrix as a way to assess test question validity and value. The evaluation of individual test questions as assessed from the matrix often, but not always, was similar to the classical pedagogical analysis that uses difficulty and discrimination indexes. Strengths of the matrix are its ability to render data as a gestalt, as well as flexibility and intuitive ease of use.  (+info)

Neuroanatomy for the dentist in the twenty-first century. (28/507)

Both the anatomy and physiology parts of national boards have questions on neuroscience. Currently, there are course guidelines established for dental neuroanatomy but not for dental neuroscience. As a result, there is great variability in what and how neurosciences are taught to dental students. At first glance, it is difficult to determine where neurosciences fit in the dental curriculum. One area where there is a close tie between basic science and clinical care is the realm of pain control. Since the Institute of Medicine study recommended that basic and clinical sciences curricula provide clinically relevant education, a neuroscience curriculum can integrate basic understanding of how the nervous system works in the care and management of dental pain. This paper describes the integrated approach to teaching neuroanatomy as a component of the head and neck gross anatomy course at the University of Louisville. This integrated strategy provides dental students with the basic concepts of neuroscience, pain pathways, autonomic nervous system, and detailed information on the cranial nerves.  (+info)

What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. (29/507)

Both developmental and neurophysiological research suggest a common coding between perceived and generated actions. This shared representational network is innately wired in humans. We review psychological evidence concerning the imitative behaviour of newborn human infants. We suggest that the mechanisms involved in infant imitation provide the foundation for understanding that others are 'like me' and underlie the development of theory of mind and empathy for others. We also analyse functional neuroimaging studies that explore the neurophysiological substrate of imitation in adults. We marshal evidence that imitation recruits not only shared neural representations between the self and the other but also cortical regions in the parietal cortex that are crucial for distinguishing between the perspective of self and other. Imitation is doubly revealing: it is used by infants to learn about adults, and by scientists to understand the organization and functioning of the brain.  (+info)

How long will long-term potentiation last? (30/507)

The paramount feature of long-term potentiation (LTP) as a memory mechanism is its characteristic persistence over time. Although the basic phenomenology of LTP persistence was established 30 years ago, new insights have emerged recently about the extent of LTP persistence and its regulation by activity and experience. Thus, it is now evident that LTP, at least in the dentate gyrus, can either be decremental, lasting from hours to weeks, or stable, lasting months or longer. Although mechanisms engaged during the induction of LTP regulate its subsequent persistence, the maintenance of LTP is also governed by activity patterns post-induction, whether induced experimentally or generated by experience. These new findings establish dentate gyrus LTP as a useful model system for studying the mechanisms governing the induction, maintenance and interference with long-term memory, including very long-term memory lasting months or longer. The challenge is to study LTP persistence in other brain areas, and to relate, if possible, the properties and regulation of LTP maintenance to these same properties of the information that is actually stored in those regions.  (+info)

Genetic neuroscience of mammalian learning and memory. (31/507)

Our primary research interest is to understand the molecular and cellular mechanisms on neuronal circuitry underlying the acquisition, consolidation and retrieval of hippocampus-dependent memory in rodents. We study these problems by producing genetically engineered (i.e. spatially targeted and/or temporally restricted) mice and analysing these mice by multifaceted methods including molecular and cellular biology, in vitro and in vivo physiology and behavioural studies. We attempt to identify deficits at each of the multiple levels of complexity in specific brain areas or cell types and deduce those deficits that underlie specific learning or memory. We will review our recent studies on the acquisition, consolidation and recall of memories that have been conducted with mouse strains in which genetic manipulations were targeted to specific types of cells in the hippocampus or forebrain of young adult mice.  (+info)

Integrative neuroscience. (32/507)

A fundamental impediment to an "Integrative Neuroscience" is the sense that scientists building models at one particular scale often see that scale as the epicentre of all brain function. This fragmentation has begun to change in a very distinctive way. Multidisciplinary efforts have provided the impetus to break down the boundaries and encourage a freer exchange of information across disciplines and scales. Despite huge deficits of knowledge, sufficient facts about the brain already exist, for an Integrative Neuroscience to begin to lift us clear of the jungle of detail, and shed light upon the workings of the brain as a system. Integrations of brain theory can be tested using judicious paradigm designs and measurement of temporospatial activity reflected in brain imaging technologies. However, to test realistically these new hypotheses requires consistent findings of the normative variability in very large numbers of control subjects, coupled with high sensitivity and specificity of findings in psychiatric disorders. Most importantly, these findings need to be analyzed and modeled with respect to the fundamental mechanisms underlying these measures. Without this convergence of theory, databases, and methodology (including across scale physiologically realistic numerical models), the clinical utility of brain imaging technologies in psychiatry will be significantly impeded. The examples provided in this paper of integration of theory, temporospatial integration of neuroimaging technologies, and a numerical simulation of brain function, bear testimony to the ongoing conversion of an Integrative Neuroscience from an exemplar status into reality.  (+info)