(1/453) Two affinities for a single antagonist at the neuronal NK1 tachykinin receptor: evidence from quantitation of receptor endocytosis.

1. In smooth muscle contractility assays, many NK1 receptor (NK1r) antagonists inhibit responses to the neurotransmitter, substance P (SP), and its analogue, septide, with markedly different potency, leading to the proposal that there is a septide-preferring receptor related to the NK1r. 2. We used fluorescence immunohistochemistry and confocal microscopy to visualize agonist-induced NK1r endocytosis and analyse agonist/antagonist interactions at native NK1r in neurons of the myenteric plexus of guinea-pig ileum. 3. SP and septide gave sigmoid log concentration-response curves and were equipotent in inducing NK1r endocytosis. 4. The NK1r antagonists, CP-99994 (2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine dihydrochloride and MEN-10581, cyclo(Leu,[CH2NH]Lys(benzyloxycarbonyl)-Gln-Trp-Phe-betaAla) were both more potent in inhibiting endocytosis (50 x and 8 x greater respectively) against septide than against SP. 5. The results suggest that SP and septide interact differently with the NK1r, and that a single antagonist can exhibit different affinities at a single NK1r population, depending on the agonist with which it competes. Thus it may not be necessary to posit a separate septide-preferring tachykinin receptor.  (+info)

(2/453) Real-time visualization of the cellular redistribution of G protein-coupled receptor kinase 2 and beta-arrestin 2 during homologous desensitization of the substance P receptor.

The substance P receptor (SPR) is a G protein-coupled receptor (GPCR) that plays a key role in pain regulation. The SPR desensitizes in the continued presence of agonist, presumably via mechanisms that implicate G protein-coupled receptor kinases (GRKs) and beta-arrestins. The temporal relationship of these proposed biochemical events has never been established for any GPCR other than rhodopsin beyond the resolution provided by biochemical assays. We investigate the real-time activation and desensitization of the human SPR in live HEK293 cells using green fluorescent protein conjugates of protein kinase C, GRK2, and beta-arrestin 2. The translocation of protein kinase C betaII-green fluorescent protein to and from the plasma membrane in response to substance P indicates that the human SPR becomes activated within seconds of agonist exposure, and the response desensitizes within 30 s. This desensitization process coincides with a redistribution of GRK2 from the cytosol to the plasma membrane, followed by a robust redistribution of beta-arrestin 2 and a profound change in cell morphology that occurs after 1 min of SPR stimulation. These data establish a role for GRKs and beta-arrestins in homologous desensitization of the SPR and provide the first visual and temporal resolution of the sequence of events underlying homologous desensitization of a GPCR in living cells.  (+info)

(3/453) Neurogenic plasma leakage in mouse airways.

1. This study sought to determine whether neurogenic inflammation occurs in the airways by examining the effects of capsaicin or substance P on microvascular plasma leakage in the trachea and lungs of male pathogen-free C57BL/6 mice. 2. Single bolus intravenous injections of capsaicin (0.5 and 1 micromol kg(-1), i.v.) or substance P (1, 10 and 37 nmol kg(-10, i.v.) failed to induce significant leakage in the trachea, assessed as extravasation of Evans blue dye, but did induce leakage in the urinary bladder and skin. 3. Pretreatment with captopril (2.5 mg kg(-1), i.v.), a selective inhibitor of angiotensin converting enzyme (ACE), either alone or in combination with phosphoramidon (2.5 mg kg(-1), i.v.), a selective inhibitor of neutral endopeptidase (NEP), increased baseline leakage of Evans blue in the absence of any exogenous inflammatory mediator. The increase was reversed by the bradykinin B2 receptor antagonist Hoe 140 (0.1 mg kg(-1), i.v.). 4. After pretreatment with phosphoramidon and captopril, capsaicin increased the Evans blue leakage above the baseline in the trachea, but not in the lung. This increase was reversed by the tachykinin (NK1) receptor antagonist SR 140333 (0.7 mg kg(-1), i.v.), but not by the NK2 receptor antagonist SR 48968 (1 mg kg(-1), i.v.). 5. Experiments using Monastral blue pigment as a tracer localized the leakage to postcapillary venules in the trachea and intrapulmonary bronchi, although the labelled vessels were less numerous in mice than in comparably treated rats. Blood vessels of the pulmonary circulation were not labelled. 6. We conclude that neurogenic inflammation can occur in airways of pathogen-free mice, but only after the inhibition of enzymes that normally degrade inflammatory peptides. Neurogenic inflammation does not involve the pulmonary microvasculature.  (+info)

(4/453) Neurotensin is a proinflammatory neuropeptide in colonic inflammation.

The neuropeptide neurotensin mediates several intestinal functions, including chloride secretion, motility, and cellular growth. However, whether this peptide participates in intestinal inflammation is not known. Toxin A, an enterotoxin from Clostridium difficile, mediates pseudomembranous colitis in humans. In animal models, toxin A causes an acute inflammatory response characterized by activation of sensory neurons and intestinal nerves and immune cells of the lamina propria. Here we show that neurotensin and its receptor are elevated in the rat colonic mucosa following toxin A administration. Pretreatment of rats with the neurotensin receptor antagonist SR-48, 692 inhibits toxin A-induced changes in colonic secretion, mucosal permeability, and histologic damage. Exposure of colonic explants to toxin A or neurotensin causes mast cell degranulation, which is inhibited by SR-48,692. Because substance P was previously shown to mediate mast cell activation, we examined whether substance P is involved in neurotensin-induced mast cell degranulation. Our results show that neurotensin-induced mast cell degranulation in colonic explants is inhibited by the substance P (neurokinin-1) receptor antagonist CP-96,345, indicating that colonic mast activation in response to neurotensin involves release of substance P. We conclude that neurotensin plays a key role in the pathogenesis of C. difficile-induced colonic inflammation and mast cell activation.  (+info)

(5/453) Effect of SR-140333, a neurokinin-1 receptor antagonist, on airway reactivity to methacholine in sedated rats.

AIM: To study the roles of neurokinins in the airway reactivity (AR) to methacholine chloride (MC). METHODS: The effects of (S)-1-(2-[3, 4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl) piperidin-3-yl]ethyl)-4-phenyl-1-azoniabicyclo [2.2.2]octane.chloride (SR-140333), a neurokinin-1 receptor antagonist, on AR to inhaled MC in diazepam-sedated rats, and on MC-induced contraction of isolated tracheal spiral strips were observed. RESULTS: SR-140333 inhibited the increase in respiratory rate (RR) induced by MC aerosol (10-1000 mumol/m3), and the ID50 for inhibiting the response to MC aerosol (1 mmol/m3) was 4.9 micrograms.kg-1 (95% confidence limits 1.4-17.2 micrograms.kg-1). SR-140333 1 mumol.L-1 had no inhibitory effect on MC-induced tracheal contraction. Atropine blocked responses to MC both in vivo and in vitro. CONCLUSION: Endogenous neurokinins are involved in the AR to MC in rats, at least partly mediated via neurokinin-1 receptors.  (+info)

(6/453) Chronic activation of neurokinin-1 receptor induces pulmonary hypertension in rats.

In this study we explored the hypothesis that chronic activation of neurokinin-1 (NK-1) receptor induces pulmonary hypertension in Wistar rats. First, the activation of NK-1 receptor on the pulmonary circulation was investigated by use of a chronic injection of NK-1 agonist [Ser9,Met(O2)11]-substance P (1 x 10(-9) mol/kg) for 2 wk at sea level (rats breathed room air) and during hypoxia (rats were placed in a hypobaric 380-Torr chamber). Second, we studied the effect of NK-1 antagonist (CP-96345) on developing and developed (after 4 wk of chronic hypoxia) pulmonary hypertension. Pulmonary arterial pressure, the weight ratio of right ventricle to left ventricle + septum, hematocrit, and substance P (SP) were measured. We found that NK-1 agonist significantly increased pulmonary arterial pressure in the sea-level but not in the hypoxic group. However, NK-1 agonist induced neither right heart hypertrophy nor polycythemia. CP-96345 significantly decreased pulmonary arterial pressure in the hypoxic group but had no effect in the sea-level group. Furthermore, CP-96345 significantly attenuated the acute SP-induced increase in pulmonary arterial pressure in the sea-level and hypoxic groups, with a larger increase in the hypoxic group. These results suggest that chronic activation of NK-1 receptor induces pulmonary hypertension and that there is an increase in the sensitivity of pulmonary vessels in response to SP in chronically hypoxic rats.  (+info)

(7/453) Antiemetic activity of the NK1 receptor antagonist GR205171 in the treatment of established postoperative nausea and vomiting after major gynaecological surgery.

In this double-blind, randomized, parallel group study, we have investigated the antiemetic activity of the potent and selective NK1 receptor antagonist GR205171 25 mg i.v. compared with placebo in the treatment of established postoperative nausea and vomiting (PONV) in patients after major gynaecological surgery performed under general anaesthesia. The incidence of PONV in the study population was 65%. Thirty-six patients were treated with placebo or GR205171 (18 patients per group). GR205171 produced greater control of PONV than placebo over the 24-h assessment period. The stimuli for emesis after PONV are multifactorial and the efficacy of GR205171 in this study supports the broad spectrum potential for NK1 receptor antagonists in the management of postoperative emesis. GR205171 was well tolerated and no adverse events were reported that would preclude the further development of this agent.  (+info)

(8/453) Capsaicin-insensitive sensory-efferent meningeal vasodilatation evoked by electrical stimulation of trigeminal nerve fibres in the rat.

1. Antidromic vasodilatation and plasma extravasation to stimulation of the trigeminal ganglion or its perivascular meningeal fibres was investigated by laser-Doppler flowmetry and 125I-labelled bovin serum albumin in the dura mater and in exteroceptive areas (nasal mucosa, upper eyelid) of anaesthetized rats pretreated with guanethidine and pipecuronium. 2 Trigeminal stimulation at 5 Hz for 20 s elicited unilateral phasic vasodilatation in the dura and lasting response in the nasal mucosa. Resiniferatoxin (1-3 microg kg(-1) i.v.), topical (1%) or systemic capsaicin pretreatment (300 mg kg(-1) s.c. plus 1 mg kg(-1) i.v.) did not inhibit the meningeal responses but abolished or strongly inhibited the nasal responses. Administration of vinpocetine (3 mg kg(-1) i.v.) increased both basal blood flow and the dural vasodilatation to perivascular nerve stimulation. 3. Dural vasodilatation to trigeminal stimulation was not inhibited by the calcitonin gene-related peptide-1 receptor (CGRP-1) antagonist hCGRP8-37 (15 or 50 microg kg(-1) i.v), or the neurokinin-1 receptor antagonist RP 67580 (0.1 mg kg(-1) i.v.) although both antagonists inhibited the nasal response. Neither mucosal nor meningeal responses were inhibited by atropine (5 mg kg(-1) i.v.), hexamethonium (10 mg kg(-1) i.v.) or the vasoactive intestinal polypeptide (VIP) antagonist (p-chloro-D-Phe6-Leul7)VIP (20 microg kg(-1) i.v.). 4. Plasma extravasation in the dura and upper eyelid elicited by electrical stimulation of the trigeminal ganglion was almost completely abolished in rats pretreated with resiniferatoxin (3 microg kg(-1) i.v.). 5. It is concluded that in the rat meningeal vasodilatation evoked by stimulation of trigeminal fibres is mediated by capsaicin-insensitive primary afferents, while plasma extravasation in the dura and upper eyelid and the vasodilatation in the nasal mucosa are mediated by capsaicin-sensitive trigeminal fibres.  (+info)