Neuroendocrine cells in tumour growth of the prostate. (17/805)

The prognostic significance of neuroendocrine differentiation in prostatic malignancy is controversial, but the results of recent studies with markers such as chromogranin A and neurone-specific enolase suggest that neuroendocrine differentiation, as reflected by increased tissue expression or blood concentrations of these neuroendocrine secretory products, is associated with a poor prognosis, tumour progression, and androgen independence. As all malignant neuroendocrine cells are devoid of androgen receptors and the expression of neuroendocrine cells is not suppressed by androgen ablation, clonal propagation of androgen receptor-negative neuroendocrine cells may have an important role in the development of androgen-independent prostatic carcinoma. This has significant implications for the treatment of prostate cancer, because several of the hormones that are secreted by neuroendocrine differentiated, malignant prostatic cells are potential candidates for use in drug treatment. A limited number of hormones have been tested in this context, in particular somatostatin, bombesin, and serotonin. As there is currently no successful treatment for differentiated prostate cancer, new therapeutic procedures and trials need to be developed to test drugs based on neuroendocrine hormones or their antagonists.  (+info)

Imaging of nonlaryngeal neuroendocrine carcinoma. (18/805)

The imaging and pathologic features of three cases of nonlaryngeal neuroendocrine carcinoma of the head and neck are described. Neuroendocrine carcinomas represent malignant epithelial neuroendocrine neoplasms and are classified as three types: typical carcinoid (well differentiated), atypical carcinoid (moderately differentiated), and small cell neuroendocrine (poorly differentiated) carcinomas. The CT and MR imaging features of these tumors are nonspecific. Paranasal sinus neuroendocrine carcinomas showed expansion and destruction of the sinus, whereas metastatic neuroendocrine carcinomas to an intraparotid lymph node presented as a circumscribed parotid mass on CT scans.  (+info)

Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. (19/805)

Tumor growth is dependent on angiogenesis, which is thought to be controlled by angiogenic factors. Therefore, the immunoreactivity of the angiogenic cytokine vascular endothelial growth factor (VEGF) was semiquantitatively scored in archival prostate tumors obtained at diagnosis in 221 patients followed expectantly. At diagnosis, 125 patients suffered from clinically localized disease. Median length of follow-up was 15 years, and 57% of the patients eventually died of prostate cancer. All of the tumors exhibited cytoplasmic staining for VEGF. The staining intensity was weak in 47 tumors and moderate and strong in 107 and 67, respectively. VEGF expression was significantly correlated with microvessel density (MVD; median, 43; range, 16-151; P = 0.014), increasing T-classification (P = 0.001), dedifferentiation (P < 0.001), and disease-specific survival (P = 0.013). Strongly VEGF-immunoreactive, neuroendocrine-differentiated (NE) tumor cells were observed in 125 tumors. NE expression was significantly correlated with increasing MVD, increasing T-classification, dedifferentiation, and survival (all, P < 0.001). MVD and NE tumor cell expressions were significant variables in a multivariate analysis that included patients with clinically localized prostate cancer only. VEGF and NE expression were significantly correlated with MVD, clinical characteristics, and disease-specific survival. NE expression was a significant prognostic marker in localized prostate cancer patients, whereas the applied semiquantitatively scoring of VEGF expression was inadequate to make this growth factor provide any additional prognostic information. Moreover, the significant VEGF expression of NE tumor cells suggests an additional important character of these cells in the involvement in disease progression.  (+info)

Constitutive achaete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. (20/805)

The transcription factor achaete-scute homologue-1 (ASH1) is essential for neural differentiation during fetal development and is a cardinal feature of neuroendocrine (NE) tumors such as small cell lung cancer. To explore the potential of ASH1 to promote NE differentiation and tumorigenesis in the lung, we constitutively expressed the factor in nonendocrine airway epithelial cells using transgenic mice. Progressive airway hyperplasia and metaplasia developed beginning at 3 weeks of life. ASH1 potently enhanced the tumorigenic effect of SV40 large T antigen in airway epithelium. These doubly transgenic animals developed massive NE lung tumors, implying that ASH1 may cooperate with defects in p53, pRb, or related pathways in promoting NE lung carcinogenesis.  (+info)

Control of CCK gene transcription by PACAP in STC-1 cells. (21/805)

The mechanisms by which neuroendocrine stimulants regulate CCK gene transcription are unclear. We examined promoter activation by pituitary adenylate cyclase-activating polypeptide (PACAP), a known CCK secretagogue, in the enteroendocrine cell line STC-1. The promoter region from -70 to -87 bp, relative to the transcriptional start site, contains a composite calcium/cyclic AMP response element (CRE)/activator protein 1 (AP1) site that may bind CRE binding protein (CREB) and AP1. PACAP (with IBMX) stimulated expression of an 87-bp construct 3.35+/-0.36-fold but had no effect on a -70 construct. The effect was blocked by the protein kinase A inhibitor H-89 and by a dominant-negative CREB plasmid. Mutation of the CRE/AP1 site to a canonical CRE site did not affect the response to PACAP, but mutation to a canonical AP1 site prevented it. CREB phosphorylation was increased after PACAP treatment. Electrophoretic mobility shift assay and supershift analysis revealed that CREB and not AP1 bound to the CRE/AP1 site and that PACAP increased the proportion of phosphorylated CREB that was bound. We conclude that PACAP increases CCK gene expression via a cAMP-mediated pathway involving CREB phosphorylation by protein kinase A and activation of a composite CRE/AP1 site.  (+info)

Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. (22/805)

Carcinoid tumors are predominantly found in the gastrointestinal tract and are characterized by hypersecretion of various substances, including bioamines and neuropeptides, leading to functional tumor disease. Here, we demonstrate that human BON carcinoid tumor cells express functionally active insulin-like growth factor-I (IGF-I) receptors and secrete IGF-I, suggesting an autocrine action of this growth factor. The IGF-I receptor was functionally active. IGF-I stimulated phosphatidylinositol 3-kinase (PI3-kinase), p70 S6 kinase (p70s6k), and extracellular signal-regulated kinase 2 activity in BON cells. Furthermore, immunoneutralization of endogenously released IGF-I markedly reduced the high basal activity of p70s6k and extracellular signal-regulated kinase 2 in serum-starved BON cells. Exogenously added IGF-I induced a marked increase in chromogranin A secretion, a marker protein for neuroendocrine secretion, by a process that was largely dependent on PI3-kinase activity. In addition, immunoneutralization of endogenously released IGF-I markedly reduced basal chromogranin A release by BON cells. Thus, the autocrine IGF-I loop regulates basal neuroendocrine secretion in BON cells. Next, we investigated the role of IGF-I as a growth promoting agent for BON cells. Our data demonstrate that IGF-I stimulates anchorage-dependent and anchorage-independent growth of BON cells by a pathway that involves PI3-kinase, mammalian target of rapamycin/p70s6k, and mitogen-activated protein kinase kinase 1 activity. Interestingly, mitogen-activated protein kinase kinase 1 activity was less important for anchorage-independent growth of BON cells. Endogenously released IGF-I was found to be largely responsible for autonomous growth of BON cells in serum-free medium and for the constitutive expression of cyclin D1 in these cells. In conclusion, IGF-I is a major autocrine regulator of neuroendocrine secretion and growth of human BON neuroendocrine tumor cells. Because our data also demonstrate that a significant proportion of neuroendocrine tumors express the IGF-I receptor and its ligand, interference with this pathway could be useful in the treatment of hypersecretion syndromes and growth of human neuroendocrine tumors.  (+info)

Nuclear localization of 111In after intravenous injection of [111In-DTPA-D-Phe1]-octreotide in patients with neuroendocrine tumors. (23/805)

Treatment with tumor-targeting substances is currently being evaluated in clinical trials. For patients with neuroendocrine tumors expressing somatostatin receptors, the 111In-labeled somatostatin analog [diethylenetriaminepentaacetic acid (DTPA)-DPhe1]-octreotide has been used with promising results. To further investigate the clinical effect of the injected conjugate, we analyzed the cellular distribution of 111In by ultrastructural autoradiography. METHODS: Seven patients with somatostatin receptor-expressing midgut carcinoid tumors scheduled for abdominal surgery were investigated by somatostatin receptor scintigraphy. During operation, tumor tissue samples and samples of normal intestine were collected, fixed, and processed for electron microscopy. A thin layer of film emulsion was applied on sections and after the exposure film was developed. The cellular distribution of silver precipitations indicating the presence of isotope was evaluated. RESULTS: Cell surface receptor binding and internalization of [111In-DTPA-D-Phe1]-octreotide in the tumor cells was easily revealed by silver precipitations in the film. Multiple silver grains were seen at the plasma membrane, in the cytoplasmic area among secretory granules and vesicular compartments, and in the perinuclear area. Silver grains were also regularly located in the nucleus. For all patients, the silver precipitation patterns from 111In decay were identical in all examined cells from removed tumors, and in most cells 111In could be seen in the nucleus. The specificity of the silver reaction products is supported by the observation that enterocytes in intestinal tissue specimens from near the tumor did not show any silver grains and no background labeling was seen in the plastic. CONCLUSION: After internalization through the somatostatin receptor system, 111In is translocated to the perinuclear area and into the nucleus. Whether the nuclide is still conjugated to the intact somatostatin analog or to part of it cannot be evaluated in this study. Despite the short irradiation range of 111In, the nuclear localization can explain its clinical effectiveness. The results from this study suggest that [111In-DTPA-D-Phe1]-octreotide may act as a powerful tumor cell-targeting substance.  (+info)

Peptide receptor imaging and therapy. (24/805)

This article reviews the results of somatostatin receptor imaging (SRI) in patients with somatostatin receptor-positive neuroendocrine tumors, such as pituitary tumors, endocrine pancreatic tumors, carcinoids, gastrinomas, and paragangliomas, or other diseases in which somatostatin receptors may also be expressed, like sarcoidosis and autoimmune diseases. [(111)In-DTPA0]octreotide is a radiopharmaceutical that has great potential for helping visualize whether somatostatin receptor-positive tumors have recurred. The overall sensitivity of SRI to localize neuroendocrine tumors is high. In several neuroendocrine tumor types, inclusion of SRI in the localization or staging procedure may be very rewarding in terms of cost effectiveness, patient management, or quality of life. The value of SRI in patients with other tumors, such as breast cancer or malignant lymphomas, or in patients with granulomatous diseases has to be established. The application of radiolabeled peptides may be clinically useful in another way: after the injection of [(111)In-DTPA0]octreotide, surgeons can detect tumor localizations by a probe that is used during the operation. This may be of particular value if small tumors with a high receptor density are present (e.g., gastrinomas). As the success of peptide receptor scintigraphy for tumor visualization became clear, the next logical step was to try to label these peptides with radionuclides emitting alpha or beta particles, or Auger or conversion electrons, and to perform radiotherapy with these radiolabeled peptides. The results of the described studies with 90Y- and (111)In-labeled octreotide show that peptide receptor radionuclide therapy using radionuclides with appropriate particle ranges may become a new treatment modality. One might consider the use of radiolabeled somatostatin analogs first in an adjuvant setting after surgery of somatostatin receptor-positive tumors to eradicate occult metastases and second for cancer treatment at a later stage.  (+info)