Human alpha-N-acetylgalactosaminidase (alpha-NAGA) deficiency: no association with neuroaxonal dystrophy? (1/34)

Two new individuals with alpha-NAGA deficiency are presented. The index patient, 3 years old, has congenital cataract, slight motor retardation and secondary demyelinisation. Screening of his sibs revealed an alpha-NAGA deficiency in his 7-year-old healthy brother who had no clinical or neurological symptoms. Both sibs are homozygous for the E325K mutation, the same genotype that was found in the most severe form of alpha-NAGA deficiency presenting as infantile neuroaxonal dystrophy. Thus, at the age of 7 years the same genotype of alpha-NAGA may present as a 'non-disease' (present healthy case) and can be associated with the vegetative state (the first two patients described with alpha-NAGA deficiency). The clinical heterogeneity among the 11 known individuals with alpha-NAGA deficiency is extreme, with a 'non-disease' (two cases) and infantile neuroaxonal dystrophy (two cases) at the opposite sides of the clinical spectrum. The broad spectrum is completed by a very heterogeneous group of patients with various degrees of epilepsy/behavioural difficulties/psychomotor retardation (four patients) and a mild phenotype in adults without overt neurological manifestations who have angiokeratoma and clear vacuolisation in various cell types (three cases). These observations are difficult to reconcile with a straightforward genotype-phenotype correlation and suggest that factors or genes other than alpha-NAGA contribute to the clinical heterogeneity of the 11 patients with alpha-NAGA deficiency.  (+info)

Neuroaxonal dystrophy in raccoons (Procyon lotor) from Iowa. (2/34)

During a 12-month period (1998-1999), microscopic evidence of neuroaxonal dystrophy (NAD) in medullae oblongata of raccoons (Procyon lotor) was observed in 17/39 (47% prevalence in adults) from Iowa, USA. Three of the animals were kits (<3 months), 26 were between 1 and 2 years, and 10 were over 7 years. Lesions were not seen in the medullae of the 3 kits. In young adults, the lesions were mild and were seen in 7 animals. More severe lesions were present in the 10 older raccoons. Grossly, the brains were unremarkable. Microscopically, NAD was confined to the dorsal caudal medulla, where certain nuclei (predominantly gracilis and cuneate) were bilaterally affected. Severely affected animals had vacuolar degeneration of neurons or neuronal loss and extensive areas of spongiosis. Tests for the presence of PrP(res) in the brain were negative. Spongiotic areas often contained axonal spheroids. Degenerate neurons and axons occasionally contained amphophilic periodic acid-Schiff-positive granular material. There was a paucity of inflammatory cells in the affected areas. Since lesions were not present in kits, were either absent or mild in young adults, and were severe in older raccoons, the findings may be related to advancing age. Neuroaxonal dystrophy has not been previously reported in raccoons. Retrospective examination of raccoon brains from the eastern and northwestern areas of the country revealed very low prevalence of NAD. Because of the apparently high prevalence of this condition at this geographic location, factors other than age (genetic, nutritional, and/or environmental) may influence this degenerative process in the brains of raccoons in Iowa.  (+info)

Pathogenesis of axonal dystrophy and demyelination in alphaA-crystallin-expressing transgenic mice. (3/34)

We recently described a transgenic mouse strain overexpressing hamster alphaA-crystallin, a small heat shock protein, under direction of the hamster vimentin promoter. As a result myelin was degraded and axonal dystrophy in both central nervous system (especially spinal cord) and peripheral nervous system occurred. Homozygous transgenic mice developed hind limb paralysis after 8 weeks of age and displayed progressive loss of myelin and axonal dystrophy in both the central and peripheral nervous system with ongoing age. Pathologically the phenotype resembled, to a certain extent, neuroaxonal dystrophy. The biochemical findings presented in this paper (activity of the enzymes superoxide dismutase, catalase and transglutamase, myelin protein zero expression levels and blood sugar levels) confirm this pathology and exclude other putative pathologies like Amyothrophic Lateral Sclerosis and Hereditary Motor and Sensory Neuropathy. Consequently, an excessive cytoplasmic accumulation of the transgenic protein or a disturbance of the normal metabolism are considered to cause the observed neuropathology. Therefore, extra-ocular alphaA-crystallin-expressing transgenic mice may serve as a useful animal model to study neuroaxonal dystrophy.  (+info)

Diffusion-weighted and conventional MR imaging findings of neuroaxonal dystrophy. (4/34)

BACKGROUND AND PURPOSE: Neuroaxonal dystrophy is a rare progressive disorder of childhood characterized by mental deterioration and seizures. The diffusion-weighted and conventional MR imaging findings are reported for six cases. METHODS: Six patients aged 19 months to 9 years with proved neuroaxonal dystrophy (one with the infantile form, five juvenile forms) underwent imaging at 1.5 T. Echo-planar diffusion-weighted images were acquired with a trace imaging sequence in five patients and with a three-gradient protocol (4000/110) in one. Images obtained with a b value of 1000 s/mm2 and corresponding apparent diffusion coefficient (ADC) maps were studied. ADCs from lesion sites and normal regions (pons and temporal and occipital lobes) were evaluated. RESULTS: A hyperintense cerebellum (a characteristic of the disease) was evident on fluid-attenuated inversion recovery images in all cases. Four patients had associated cerebral changes. Diffusion-weighted images, especially ADC maps, showed an elevated diffusion pattern in the cerebellum in the five juvenile cases (normal images at b = 1000 s/mm2, ADCs of 1.30-2.60 x 10(-3) mm2/s). A restricted diffusion pattern was evident in the infantile case (hyperintensity at b = 1000 s/mm2, low ADCs of 0.44-0.55 x 10(-3) mm2/s). ADCs were normal in the pons and temporal and occipital lobes (0.64-1.00 x 10(-3) mm2/s). CONCLUSION: An elevated cerebellar diffusion pattern is a predominant feature of juvenile neuroaxonal dystrophy. Coexistent elevated and restricted diffusion patterns were evident in different brain regions in different forms of the disease. Dystrophic axons likely account the restricted diffusion, whereas spheroid formation (swelling) and abnormal myelination result in elevated diffusion.  (+info)

Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. (5/34)

Neuritic plaques are a defining feature of Alzheimer disease (AD) pathology. These structures are composed of extracellular accumulations of amyloid-beta peptide (Abeta) and other plaque-associated proteins, surrounded by large, swollen axons and dendrites (dystrophic neurites) and activated glia. Dystrophic neurites are thought to disrupt neuronal function, but whether this damage is static, dynamic, or reversible is unknown. To address this, we monitored neuritic plaques in the brains of living PDAPP;Thy-1:YFP transgenic mice, a model that develops AD-like pathology and also stably expresses yellow fluorescent protein (YFP) in a subset of neurons in the brain. Using multiphoton microscopy, we observed and monitored amyloid through cranial windows in PDAPP;Thy-1:YFP double-transgenic mice using the in vivo amyloid-imaging fluorophore methoxy-X04, and individual YFP-labeled dystrophic neurites by their inherent fluorescence. In vivo studies using this system suggest that amyloid-associated dystrophic neurites are relatively stable structures in PDAPP;Thy-1:YFP transgenic mice over several days. However, a significant reduction in the number and size of dystrophic neurites was seen 3 days after Abeta deposits were cleared by anti-Abeta antibody treatment. This analysis suggests that ongoing axonal and dendritic damage is secondary to Abeta and is, in part, rapidly reversible.  (+info)

Mammalian E4 is required for cardiac development and maintenance of the nervous system. (6/34)

Ubiquitin conjugation typically requires three classes of enzyme: E1, E2, and E3. A fourth type of enzyme (E4), however, was recently shown to be required for the degradation of certain types of substrate in yeast. We previously identified UFD2a (also known as E4B) as an E4 in mammals. UFD2a is exclusively expressed in cardiac muscle during mouse embryonic development, but it is abundant in neurons of adult mice and is implicated in the pathogenesis of neurodegenerative disease. The precise physiological function of this enzyme has remained largely unknown, however. Here, we show that mice lacking UFD2a die in utero, manifesting marked apoptosis in the developing heart. Polyubiquitylation activity for an E4 substrate was greatly reduced in Ufd2a(-/-) mouse embryonic fibroblasts. Furthermore, Ufd2a(+/-) mice displayed axonal dystrophy in the nucleus gracilis, as well as degeneration of Purkinje cells accompanied by endoplasmic reticulum stress. These animals also developed a neurological disorder. UFD2a thus appears to be essential for the development of cardiac muscle, as well as for the protection of spinocerebellar neurons from degeneration induced by endoplasmic reticulum stress.  (+info)

Spontaneous murine neuroaxonal dystrophy: a model of infantile neuroaxonal dystrophy. (7/34)

The neuroaxonal dystrophies (NADs) in human beings are fatal, inherited, neurodegenerative diseases with distinctive pathological features. This report describes a new mouse model of NAD that was identified as a spontaneous mutation in a BALB/c congenic mouse strain. The affected animals developed clinical signs of a sensory axonopathy consisting of hindlimb spasticity and ataxia as early as 3 weeks of age, with progression to paraparesis and severe morbidity by 6 months of age. Hallmark histological lesions consisted of spheroids (swollen axons), in the grey and white matter of the midbrain, brain stem, and all levels of the spinal cord. Ultrastructural analysis of the spheroids revealed accumulations of layered stacks of membranes and tubulovesicular elements, strongly resembling the ultrastructural changes seen in the axons of human patients with endogenous forms of NAD. Mouse NAD would therefore seem a potentially valuable model of human NADs.  (+info)

PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. (8/34)

Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis.  (+info)