Effect of cryoanalgesia combined with intravenous continuous analgesia in thoracotomy patients. (73/1061)

Fifty patients undergoing thoracotomy was studied to compare the effects of cryoanalgesia combined with intravenous continuous analgesia (IVCA). Patients were randomized into two groups: IVCA group and IVCA-cryo group. Subjective pain intensity was assessed on a visual analogue scale at rest (VAS-R) and during movement (VAS-M). Analgesic requirements were evaluated over the 7 days following surgery. Forced vital capacity (FVC) and forced expiratory volume in 1 sec (FEV1) were measured before operation, on the 2nd and 7th postoperative days (POD). We interviewed patients by telephone to evaluate the prevalence of post-thoracotomy pain at the 1st, 3rd, and 6th months postoperatively. No significant differences were observed between the two groups with respect to postoperative pain, analgesic requirements, side effects, respiratory complications, or prevalence of post-thoracotomy pain. However, a significant increase in FVC and FEV1 was observed on the 7th POD in IVCAcryo group. The incidence of the post-thoracotomy pain at the 1st, 3rd, and 6th months postoperatively was 68, 60, and 44% in IVCA group, and 88, 68, and 28% in IVCAcryo group, respectively. Our study showed that cryoanalgesia combined with IVCA effectively restore respiratory function on 7th POD, but that it was not effective at reducing the incidence of post-thoracotomy pain.  (+info)

Specific Inhibition of IkappaB kinase reduces hyperalgesia in inflammatory and neuropathic pain models in rats. (74/1061)

Phosphorylation of IkappaB through IkappaB kinase (IKK) is the first step in nuclear factor kappaB (NF-kappaB) activation and upregulation of NF-kappaB-responsive genes. Hence, inhibition of IKK activity may be expected to prevent injury-, infection-, or stress-induced upregulation of various proinflammatory genes and may thereby reduce hyperalgesia and inflammation. In the present study, we tested this hypothesis using a specific and potent IKK inhibitor (S1627). In an IKK assay, S1627 inhibited IKK activity with an IC50 value of 10.0 +/- 1.2 nm. In cell culture experiments, S1627 inhibited interleukin (IL)-1beta-stimulated nuclear translocation and DNA-binding of NF-kappaB. Plasma concentration time courses after intraperitoneal injection revealed a short half-life of 2.8 hr in rats. Repeated intraperitoneal injections were, therefore, chosen as the dosing regimen. S1627 reversed thermal and mechanical hyperalgesia at 3x 30 mg/kg in the zymosan-induced paw inflammation model and reduced the inflammatory paw edema at 3x 40 mg/kg. S1627 also significantly reduced tactile and cold allodynia in the chronic constriction injury model of neuropathic pain at 30 mg/kg once daily. The drug had no effect on acute inflammatory nociception in the formalin test and did not affect responses to heat and tactile stimuli in naive animals. As hypothesized, S1627 prevented the zymosan-induced nuclear translocation of NF-kappaB in the spinal cord and the upregulation of NF-kappaB-responsive genes including cyclooxygenase-2, tumor necrosis factor-alpha, and IL-1beta. Our data indicate that IKK may prove an interesting novel drug target in the treatment of pathological pain and inflammation.  (+info)

Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain. (75/1061)

OBJECTIVE: Drug resistant neurogenic pain can be relieved by repetitive transcranial magnetic stimulation (rTMS) of the motor cortex. This study was designed to assess the influence of pain origin, pain site, and sensory loss on rTMS efficacy. PATIENTS AND METHODS: Sixty right handed patients were included, suffering from intractable pain secondary to one of the following types of lesion: thalamic stroke, brainstem stroke, spinal cord lesion, brachial plexus lesion, or trigeminal nerve lesion. The pain predominated unilaterally in the face, the upper limb, or the lower limb. The thermal sensory thresholds were measured within the painful zone and were found to be highly or moderately elevated. Finally, the pain level was scored on a visual analogue scale before and after a 20 minute session of "real" or "sham" 10 Hz rTMS over the side of the motor cortex corresponding to the hand on the painful side, even if the pain was not experienced in the hand itself. RESULTS: and discussion: The percentage pain reduction was significantly greater following real than sham rTMS (-22.9% v -7.8%, p = 0.0002), confirming that motor cortex rTMS was able to induce antalgic effects. These effects were significantly influenced by the origin and the site of pain. For pain origin, results were worse in patients with brainstem stroke, whatever the site of pain. This was consistent with a descending modulation within the brainstem, triggered by the motor corticothalamic output. For pain site, better results were obtained for facial pain, although stimulation was targeted on the hand cortical area. Thus, in contrast to implanted stimulation, the target for rTMS procedure in pain control may not be the area corresponding to the painful zone but an adjacent one. Across representation plasticity of cortical areas resulting from deafferentation could explain this discrepancy. Finally, the degree of sensory loss did not interfere with pain origin or pain site regarding rTMS effects. CONCLUSION: Motor cortex rTMS was found to result in a significant but transient relief of chronic pain, influenced by pain origin and pain site. These parameters should be taken into account in any further study of rTMS application in chronic pain control.  (+info)

siRNA relieves chronic neuropathic pain. (76/1061)

Double stranded, short interfering RNAs (siRNA) of 21-22 nt length initiate a sequence-specific, post-trancriptional gene silencing in animals and plants known as RNA interference (RNAi). Here we show that RNAi can block a pathophysiological pain response and provide relief from neuropathic pain in a rat disease model by down regulating an endogenous, neuronally expressed gene. Rats, intrathecally infused with a 21 nt siRNA perfectly complementary to the pain-related cation-channel P2X3, showed diminished pain responses compared to missense (MS) siRNA-treated and untreated controls in models of both agonist-evoked pain and chronic neuropathic pain. This form of delivery caused no adverse effects in any of the animals receiving P2X3 siRNA, MS siRNA or vehicle. Molecular analysis of tissues revealed that P2X3 mRNA expressed in dorsal root ganglia, and P2X3 protein translocated into the dorsal horn of the spinal cord, were significantly diminished. These observations open a path toward use of siRNA as a genetic tool for drug target validation in the mammalian central nervous system, as well as for proof of concept studies and as therapeutic agents in man.  (+info)

Systematic review of topical capsaicin for the treatment of chronic pain. (77/1061)

OBJECTIVE: To determine the efficacy and safety of topically applied capsaicin for chronic pain from neuropathic or musculoskeletal disorders. DATA SOURCES: Cochrane Library, Medline, Embase, PubMed, an in-house database, and contact with manufacturers of topical capsaicin. STUDY SELECTION: Randomised controlled trials comparing topically applied capsaicin with placebo or another treatment in adults with chronic pain. DATA EXTRACTION: Primary outcome was dichotomous information for the number of patients with about a 50% reduction in pain. Outcomes were extracted at four weeks for musculoskeletal conditions and eight weeks for neuropathic conditions. Secondary outcomes were adverse events and withdrawals due to adverse events. DATA SYNTHESIS: Six double blind placebo controlled trials (656 patients) were pooled for analysis of neuropathic conditions. The relative benefit from topical capsaicin 0.075% compared with placebo was 1.4 (95% confidence interval 1.2 to 1.7) and the number needed to treat was 5.7 (4.0 to 10.0). Three double blind placebo controlled trials (368 patients) were pooled for analysis of musculoskeletal conditions. The relative benefit from topical capsaicin 0.025% or plaster compared with placebo was 1.5 (1.1 to 2.0) and the number needed to treat was 8.1 (4.6 to 34). Around one third of patients experienced local adverse events with capsaicin, which would not have been the case with placebo. CONCLUSIONS: Although topically applied capsaicin has moderate to poor efficacy in the treatment of chronic musculoskeletal or neuropathic pain, it may be useful as an adjunct or sole therapy for a small number of patients who are unresponsive to, or intolerant of, other treatments.  (+info)

Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. (78/1061)

The development of treatments for neuropathic pain has been hindered by our limited understanding of the basic mechanisms underlying abnormalities in nociceptor hyperexcitability. We recently showed that the polymodal receptor transient receptor potential vanilloid 4 (TRPV4), a member of the transient receptor potential (TRP) family of ion channels, may play a role in inflammatory pain (Alessandri-Haber et al., 2003). The present study tested whether TRVP4 also contributes to neuropathic pain, using a rat model of Taxol-induced painful peripheral neuropathy. Taxol is the most widely used drug for the treatment of a variety of tumor types, but the dose of Taxol that can be tolerated is limited by the development of a small-fiber painful peripheral neuropathy. We found that Taxol treatment enhanced the nociceptive behavioral responses to both mechanical and hypotonic stimulation of the hind paw. Spinal administration of antisense oligodeoxynucleotides to TRPV4, which reduced the expression of TRPV4 in sensory nerve, abolished Taxol-induced mechanical hyperalgesia and attenuated hypotonic hyperalgesia by 42%. The enhancement of osmotic nociception involves sensitization of osmotransduction in primary afferents because osmotransduction was enhanced in cultured sensory neurons isolated from Taxol-treated rats. Taxol-induced TRPV4-mediated hyperalgesia and the enhanced osmotransduction in cultured nociceptors were dependent on integrin/Src tyrosine kinase signaling. These results suggest that TRPV4 plays a crucial role in a painful peripheral neuropathy, making it a very promising target for the development of a novel class of analgesics.  (+info)

Neuropathic pain activates the endogenous kappa opioid system in mouse spinal cord and induces opioid receptor tolerance. (79/1061)

Release of endogenous dynorphin opioids within the spinal cord after partial sciatic nerve ligation (pSNL) is known to contribute to the neuropathic pain processes. Using a phosphoselective antibody [kappa opioid receptor (KOR-P)] able to detect the serine 369 phosphorylated form of the KOR, we determined possible sites of dynorphin action within the spinal cord after pSNL. KOR-P immunoreactivity (IR) was markedly increased in the L4-L5 spinal dorsal horn of wild-type C57BL/6 mice (7-21 d) after lesion, but not in mice pretreated with the KOR antagonist nor-binaltorphimine (norBNI). In addition, knock-out mice lacking prodynorphin, KOR, or G-protein receptor kinase 3 (GRK3) did not show significant increases in KOR-P IR after pSNL. KOR-P IR was colocalized in both GABAergic neurons and GFAP-positive astrocytes in both ipsilateral and contralateral spinal dorsal horn. Consistent with sustained opioid release, KOR knock-out mice developed significantly increased tactile allodynia and thermal hyperalgesia in both the early (first week) and late (third week) interval after lesion. Similarly, mice pretreated with norBNI showed enhanced hyperalgesia and allodynia during the 3 weeks after pSNL. Because sustained activation of opioid receptors might induce tolerance, we measured the antinociceptive effect of the kappa agonist U50,488 using radiant heat applied to the ipsilateral hindpaw, and we found that agonist potency was significantly decreased 7 d after pSNL. In contrast, neither prodynorphin nor GRK3 knock-out mice showed U50,488 tolerance after pSNL. These findings suggest that pSNL induced a sustained release of endogenous prodynorphin-derived opioid peptides that activated an anti-nociceptive KOR system in mouse spinal cord. Thus, endogenous dynorphin had both pronociceptive and antinociceptive actions after nerve injury and induced GRK3-mediated opioid tolerance.  (+info)

Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. (80/1061)

Although the physiological basis of erythermalgia, an autosomal dominant painful neuropathy characterized by redness of the skin and intermittent burning sensation of extremities, is not known, two mutations of Na(v)1.7, a sodium channel that produces a tetrodotoxin-sensitive, fast-inactivating current that is preferentially expressed in dorsal root ganglia (DRG) and sympathetic ganglia neurons, have recently been identified in patients with primary erythermalgia. Na(v)1.7 is preferentially expressed in small-diameter DRG neurons, most of which are nociceptors, and is characterized by slow recovery from inactivation and by slow closed-state inactivation that results in relatively large responses to small, subthreshold depolarizations. Here we show that these mutations in Na(v)1.7 produce a hyperpolarizing shift in activation and slow deactivation. We also show that these mutations cause an increase in amplitude of the current produced by Na(v)1.7 in response to slow, small depolarizations. These observations provide the first demonstration of altered sodium channel function associated with an inherited painful neuropathy and suggest that these physiological changes, which confer hyperexcitability on peripheral sensory and sympathetic neurons, contribute to symptom production in hereditary erythermalgia.  (+info)