Loading...
(1/7484) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene.

The wiring patterns among various types of neurons via specific synaptic connections are the basis of functional logic employed by the brain for information processing. This study introduces a powerful method of analyzing the neuronal connectivity patterns by delivering a tracer selectively to specific types of neurons while simultaneously transsynaptically labeling their target neurons. We developed a novel genetic approach introducing cDNA for a plant lectin, wheat germ agglutinin (WGA), as a transgene under the control of specific promoter elements. Using this method, we demonstrate three examples of visualization of specific transsynaptic neural pathways: the mouse cerebellar efferent pathways, the mouse olfactory pathways, and the Drosophila visual pathways. This strategy should greatly facilitate studies on the anatomical and functional organization of the developing and mature nervous system.  (+info)

(2/7484) even-skipped determines the dorsal growth of motor axons in Drosophila.

Axon pathfinding and target choice are governed by cell type-specific responses to external cues. Here, we show that in the Drosophila embryo, motorneurons with targets in the dorsal muscle field express the homeobox gene even-skipped and that this expression is necessary and sufficient to direct motor axons into the dorsal muscle field. Previously, it was shown that motorneurons projecting to ventral targets express the LIM homeobox gene islet, which is sufficient to direct axons to the ventral muscle field. Thus, even-skipped complements the function of islet, and together these two genes constitute a bimodal switch regulating axonal growth and directing motor axons to ventral or to dorsal regions of the muscle field.  (+info)

(3/7484) Actions of a pair of identified cerebral-buccal interneurons (CBI-8/9) in Aplysia that contain the peptide myomodulin.

A combination of biocytin back-fills of the cerebral-buccal connectives and immunocytochemistry of the cerebral ganglion demonstrated that of the 13 bilateral pairs of cerebral-buccal interneurons in the cerebral ganglion, a subpopulation of 3 are immunopositive for the peptide myomodulin. The present paper describes the properties of two of these cells, which we have termed CBI-8 and CBI-9. CBI-8 and CBI-9 were found to be dye coupled and electrically coupled. The cells have virtually identical properties, and consequently we consider them to be "twin" pairs and refer to them as CBI-8/9. CBI-8/9 were identified by electrophysiological criteria and then labeled with dye. Labeled cells were found to be immunopositive for myomodulin, and, using high pressure liquid chromatography, the cells were shown to contain authentic myomodulin. CBI-8/9 were found to receive synaptic input after mechanical stimulation of the tentacles. They also received excitatory input from C-PR, a neuron involved in neck lengthening, and received a slow inhibitory input from CC5, a cell involved in neck shortening, suggesting that CBI-8/9 may be active during forward movements of the head or buccal mass. Firing of CBI-8 or CBI-9 resulted in the activation of a relatively small number of buccal neurons as evidenced by extracellular recordings from buccal nerves. Firing also produced local movements of the buccal mass, in particular a strong contraction of the I7 muscle, which mediates radula opening. CBI-8/9 were found to produce a slow depolarization and rhythmic activity of B48, the motor neuron for the I7 muscle. The data provide continuing evidence that the small population of cerebral buccal interneurons is composed of neurons that are highly diverse in their functional roles. CBI-8/9 may function as a type of premotor neuron, or perhaps as a peptidergic modulatory neuron, the functions of which are dependent on the coactivity of other neurons.  (+info)

(4/7484) C-PR neuron of Aplysia has differential effects on "Feeding" cerebral interneurons, including myomodulin-positive CBI-12.

Head lifting and other aspects of the appetitive central motive state that precedes consummatory feeding movements in Aplysia is promoted by excitation of the C-PR neuron. Food stimuli activate C-PR as well as a small population of cerebral-buccal interneurons (CBIs). We wished to determine if firing of C-PR produced differential effects on the various CBIs or perhaps affected all the CBIs uniformly as might be expected for a neuron involved in producing a broad undifferentiated arousal state. We found that when C-PR was fired, it produced a wide variety of effects on various CBIs. Firing of C-PR evoked excitatory input to a newly identified CBI (CBI-12) the soma of which is located in the M cluster near the previously identified CBI-2. CBI-12 shares certain properties with CBI-2, including a similar morphology and a capacity to drive rhythmic activity of the buccal-ganglion. Unlike CBI-2, CBI-12 exhibits myomodulin immunoreactivity. Furthermore when C-PR is fired, CBI-12 receives a polysynaptic voltage-dependent slow excitation, whereas, CBI-2 receives relatively little input. C-PR also polysynaptically excites other CBIs including CBI-1 and CBI-8/9 but produces inhibition in CBI-3. In addition, firing of C-PR inhibits plateau potentials in CBI-5/6. The data suggest that activity of C-PR may promote the activity of one subset of cerebral-buccal interneurons, perhaps those involved in ingestive behaviors that occur during the head-up posture. C-PR also inhibits some cerebral-buccal interneurons that may be involved in behaviors in which C-PR activity is not required or may even interfere with other feeding behaviors such as rejection or grazing, that occur with the head down.  (+info)

(5/7484) Central pattern generator for escape swimming in the notaspid sea slug Pleurobranchaea californica.

Escape swimming in the notaspid opisthobranch Pleurobranchaea is an episode of alternating dorsal and ventral body flexions that overrides all other behaviors. We have explored the structure of the central pattern generator (CPG) in the cerebropleural ganglion as part of a study of neural network interactions underlying decision making in normal behavior. The CPG comprises at least eight bilaterally paired interneurons, each of which contributes and is phase-locked to the swim rhythm. Dorsal flexion is mediated by hemiganglion ensembles of four serotonin-immunoreactive neurons, the As1, As2, As3, and As4, and an electrically coupled pair, the A1 and A10 cells. When stimulated, A10 commands fictive swimming in the isolated CNS and actual swimming behavior in whole animals. As1-4 provide prolonged, neuromodulatory excitation enhancing dorsal flexion bursts and swim cycle number. Ventral flexion is mediated by the A3 cell and a ventral swim interneuron, IVS, the soma of which is yet unlocated. Initiation of a swim episode begins with persistent firing in A10, followed by recruitment of As1-4 and A1 into dorsal flexion. Recurrent excitation within the As1-4 ensemble and with A1/A10 may reinforce coactivity. Synchrony among swim interneuron partners and bilateral coordination is promoted by electrical coupling among the A1/A10 and As4 pairs, and among unilateral As2-4, and reciprocal chemical excitation between contralateral As1-4 groups. The switch from dorsal to ventral flexion coincides with delayed recruitment of A3, which is coupled electrically to A1, and with recurrent inhibition from A3/IVS to A1/A10. The alternating phase relation may be reinforced by reciprocal inhibition between As1-4 and IVS. Pleurobranchaea's swim resembles that of the nudibranch Tritonia; we find that the CPGs are similar in many details, suggesting that the behavior and network are primitive characters derived from a common pleurobranchid ancestor.  (+info)

(6/7484) Disrupted temporal lobe connections in semantic dementia.

Semantic dementia refers to the variant of frontotemporal dementia in which there is progressive semantic deterioration and anomia in the face of relative preservation of other language and cognitive functions. Structural imaging and SPECT studies of such patients have suggested that the site of damage, and by inference the region critical to semantic processing, is the anterolateral temporal lobe, especially on the left. Recent functional imaging studies of normal participants have revealed a network of areas involved in semantic tasks. The present study used PET to examine the consequences of focal damage to the anterolateral temporal cortex for the operation of this semantic network. We measured PET activation associated with a semantic decision task relative to a visual decision task in four patients with semantic dementia compared with six age-matched normal controls. Normals activated a network of regions consistent with previous studies. The patients activated some areas consistently with the normals, including some regions of significant atrophy, but showed substantially reduced activity particularly in the left posterior inferior temporal gyrus (iTG) (Brodmann area 37/19). Voxel-based morphometry, used to identify the regions of structural deficit, revealed significant anterolateral temporal atrophy (especially on the left), but no significant structural damage to the posterior inferior temporal lobe. Other evidence suggests that the left posterior iTG is critically involved in lexical-phonological retrieval: the lack of activation here is consistent with the observation that these patients are all anomic. We conclude that changes in activity in regions distant from the patients' structural damage support the argument that their prominent anomia is due to disrupted temporal lobe connections.  (+info)

(7/7484) Specification of distinct dopaminergic neural pathways: roles of the Eph family receptor EphB1 and ligand ephrin-B2.

Dopaminergic neurons in the substantia nigra and ventral tegmental area project to the caudate putamen and nucleus accumbens/olfactory tubercle, respectively, constituting mesostriatal and mesolimbic pathways. The molecular signals that confer target specificity of different dopaminergic neurons are not known. We now report that EphB1 and ephrin-B2, a receptor and ligand of the Eph family, are candidate guidance molecules for the development of these distinct pathways. EphB1 and ephrin-B2 are expressed in complementary patterns in the midbrain dopaminergic neurons and their targets, and the ligand specifically inhibits the growth of neurites and induces the cell loss of substantia nigra, but not ventral tegmental, dopaminergic neurons. These studies suggest that the ligand-receptor pair may contribute to the establishment of distinct neural pathways by selectively inhibiting the neurite outgrowth and cell survival of mistargeted neurons. In addition, we show that ephrin-B2 expression is upregulated by cocaine and amphetamine in adult mice, suggesting that ephrin-B2/EphB1 interaction may play a role in drug-induced plasticity in adults as well.  (+info)

(8/7484) Structural maturation of neural pathways in children and adolescents: in vivo study.

Structural maturation of fiber tracts in the human brain, including an increase in the diameter and myelination of axons, may play a role in cognitive development during childhood and adolescence. A computational analysis of structural magnetic resonance images obtained in 111 children and adolescents revealed age-related increases in white matter density in fiber tracts constituting putative corticospinal and frontotemporal pathways. The maturation of the corticospinal tract was bilateral, whereas that of the frontotemporal pathway was found predominantly in the left (speech-dominant) hemisphere. These findings provide evidence for a gradual maturation, during late childhood and adolescence, of fiber pathways presumably supporting motor and speech functions.  (+info)