Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. (25/3268)

Recognition of acoustic patterns in natural sounds depends on the transmission of temporal information. Octopus cells of the mammalian ventral cochlear nucleus form a pathway that encodes the timing of firing of groups of auditory nerve fibers with exceptional precision. Whole-cell patch recordings from octopus cells were used to examine how the brevity and precision of firing are shaped by intrinsic conductances. Octopus cells responded to steps of current with small, rapid voltage changes. Input resistances and membrane time constants averaged 2.4 MOmega and 210 microseconds, respectively (n = 15). As a result of the low input resistances of octopus cells, action potential initiation required currents of at least 2 nA for their generation and never occurred repetitively. Backpropagated action potentials recorded at the soma were small (10-30 mV), brief (0.24-0.54 msec), and tetrodotoxin-sensitive. The low input resistance arose in part from an inwardly rectifying mixed cationic conductance blocked by cesium and potassium conductances blocked by 4-aminopyridine (4-AP). Conductances blocked by 4-AP also contributed to the repolarization of the action potentials and suppressed the generation of calcium spikes. In the face of the high membrane conductance of octopus cells, sodium and calcium conductances amplified depolarizations produced by intracellular current injection over a time course similar to that of EPSPs. We suggest that this transient amplification works in concert with the shunting influence of potassium and mixed cationic conductances to enhance the encoding of the onset of synchronous auditory nerve fiber activity.  (+info)

Axons from anteroventral cochlear nucleus that terminate in medial superior olive of cat: observations related to delay lines. (26/3268)

The differences in path length of axons from the anteroventral cochlear nuclei (AVCN) to the medial superior olive (MSO) are thought to provide the anatomical substrate for the computation of interaural time differences (ITD). We made small injections of biotinylated dextran into the AVCN that produced intracellular-like filling of axons. This permitted three-dimensional reconstructions of individual axons and measurements of axonal length to individual terminals in MSO. Some axons that innervated the contralateral MSO had collaterals with lengths that were graded in the rostrocaudal direction with shorter collaterals innervating more rostral parts of MSO and longer collaterals innervating more caudal parts of MSO. These could innervate all or part of the length of the MSO. Other axons had restricted terminal fields comparable to the size of a single dendritic tree in the MSO. In the ipsilateral MSO, some axons had a reverse, but less steep, gradient in axonal length with greater axonal length associated with more rostral locations; others had restricted terminal fields. Thus, the computation of ITDs is based on gradients of axonal length in both the contralateral and ipsilateral MSO, and these gradients may account for a large part of the range of ITDs encoded by the MSO. Other factors may be involved in the computation of ITDs to compensate for differences between axons.  (+info)

Neurotrophin modulation of the monosynaptic reflex after peripheral nerve transection. (27/3268)

The effects of neurotrophin-3 (NT-3) and NT-4/5 on the function of axotomized group Ia afferents and motoneurons comprising the monosynaptic reflex pathway were investigated. The axotomized medial gastrocnemius (MG) nerve was provided with NT-3 or NT-4/5 for 8-35 d via an osmotic minipump attached to its central end at the time of axotomy. After this treatment, monosynaptic EPSPs were recorded intracellularly from MG or lateral gastrocnemius soleus (LGS) motoneurons in response to stimulation of the heteronymous nerve under pentobarbital anesthesia. Controls were preparations with axotomized nerves treated directly with vehicle; other axotomized controls were administered subcutaneous NT-3. Direct NT-3 administration (60 microgram/d) not only prevented the decline in EPSP amplitude from axotomized afferents (stimulate MG, record LGS) observed in axotomy controls but, after 5 weeks, led to EPSPs larger than those from intact afferents. These central changes were paralleled by recovery of group I afferent conduction velocity. Removal of NT-3 4-5 weeks after beginning treatment resulted in a decline of conduction velocity and EPSP amplitude within 1 week to values characteristic of axotomy. The increased synaptic efficacy after NT-3 treatment was associated with enhanced connectivity of single afferents to motoneurons. NT-4/5 induced modest recovery in group I afferent conduction velocity but not of the EPSPs they elicited. NT-3 or NT-4/5 had no effect on the properties of treated motoneurons or their monosynaptic EPSPs. We conclude that NT-3, and to a limited extent NT-4/5, promotes recovery of axotomized group Ia afferents but not axotomized motoneurons or the synapses on them.  (+info)

Relationships between lead absorption and peripheral nerve conduction velocities in lead workers. (28/3268)

The motor sensory, and mixed nerve conduction velocities of median and posterior tibial nerves were measured in 39 lead workers whose blood lead (PbB) concentrations ranged from 2 to 73 mug/100 g with anaverage of 29 mug/100 g. The PbB concentrations significantly correlated with the maximal motor nerve conduction velocities (MCV) and mixed nerve conduction velocities (MNCV) of the median nerve in the forearm and with the MCV of the posterior tibial nerve. Erythrocyte delta-aminolevulinic acid dehydratase (ALAD) activity correlated similarly with the MCV and MNCV of the median nerve in the forearm, and the 24-hour urinary lead excretion following the intravenous administration of CaEDTA (20 mg/kg) (lead mobilization test) correlated with the MNCV. But no parameter correlated with the sensory nerve conduction velocities. By multiple regression analysis, a combination of the three parameters of lead absorption was found to correlate significantly with the MCV and MNCV of the median nerve in the forearm. The MCVs of the median and posterior tibial nerves in lead workers were significantly delayed in the PbB range of 29-73 mug/100 g (mean 45), in the lead mobilization test range from 173 to 3,540 mug/day (mean 973), and the ALAD activity range from 4.4 to 19.4 u. (mean 14.0), respectively.  (+info)

Endogenous pH shifts facilitate spreading depression by effect on NMDA receptors. (29/3268)

Rapid extracellular alkalinizations accompany normal neuronal activity and have been implicated in the modulation of N-methyl-D-aspartate (NMDA) receptors. Particularly large alkaline transients also occur at the onset of spreading depression (SD). To test whether these endogenous pH shifts can modulate SD, the alkaline shift was amplified using benzolamide, a poorly permeant inhibitor of interstitial carbonic anhydrase. SD was evoked by microinjection of 1.2 M KCl into the CA1 stratum radiatum of rat hippocampal slices and recorded by a proximal double-barreled pH microelectrode and a distal potential electrode. In Ringer solution of pH 7.1 containing picrotoxin (but not at a bath pH of 7.4), addition of 10 microM benzolamide increased the SD alkaline shift from 0.20 +/- 0.07 to 0.38 +/- 0.17 unit pH (means +/- SE). This was correlated with a significant shortening of the latency and an increase in the conduction velocity by 26 +/- 16%. In the presence of the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (APV), benzolamide still amplified the alkaline transient, however, its effect on the SD latency and propagation velocity was abolished. The intrinsic modulation of SD by its alkaline transient may play an important role under focal ischemic conditions by removing the proton block of NMDA receptors where interstitial acidosis would otherwise limit NMDA receptor activity.  (+info)

Incremental conductance levels of GABAA receptors in dopaminergic neurones of the rat substantia nigra pars compacta. (30/3268)

1. Molecular and biophysical properties of GABAA receptors of dopaminergic (DA) neurones of the pars compacta of the rat substantia nigra were studied in slices and after acute dissociation. 2. Single-cell reverse transcriptase-multiplex polymerase chain reaction confirmed that DA neurones contained mRNAs encoding for the alpha3 subunit of the GABAA receptor, but further showed the presence of alpha4 subunit mRNAs. alpha2, beta1 and gamma1 subunit mRNAs were never detected. Overall, DA neurones present a pattern of expression of GABAA receptor subunit mRNAs containing mainly alpha3/4beta2/3gamma3. 3. Outside-out patches were excised from DA neurones and GABAA single-channel patch-clamp currents were recorded under low doses (1-5 microM) of GABA or isoguvacine, a selective GABAA agonist. Recordings presented several conductance levels which appeared to be integer multiples of an elementary conductance of 4-5 pS. This property was shared by GABAA receptors of cerebellar Purkinje neurones recorded in slices (however, with an elementary conductance of 3 pS). Only the 5-6 lowest levels were analysed. 4. A progressive change in the distribution of occupancy of these levels was observed when increasing the isoguvacine concentration (up to 10 microM) as well as when adding zolpidem (20-200 nM), a drug acting at the benzodiazepine binding site: both treatments enlarged the occupancy of the highest conductance levels, while decreasing that of the smallest ones. Conversely, Zn2+ (10 microM), a negative allosteric modulator of GABAA receptor channels, decreased the occupancy of the highest levels in favour of the lowest ones. 5. These properties of alpha3/4beta2/3gamma3-containing GABAA receptors would support the hypothesis of either single GABAA receptor channels with multiple open states or that of a synchronous recruitment of GABAA receptor channels that could involve their clustering in the membranes of DA neurones.  (+info)

Modality-specific hyper-responsivity of regenerated cat cutaneous nociceptors. (31/3268)

1. Experiments were performed on anaesthetized cats to investigate the receptive properties of regenerated cutaneous tibial nerve nociceptors, and to obtain evidence for coupling between them and other afferent fibres as being possible peripheral mechanisms involved in neuropathic pain. These properties were studied 6-7 months after nerve section and repair. 2. Recordings were made from 25 regenerated nociceptors; 14 were A fibres and the remainder were C fibres. Their receptive field sizes and conduction velocities were similar to controls. There was no significant difference between their mechanical thresholds and those of a control population of nociceptors. 3. Regenerated nociceptors were significantly more responsive to suprathreshold mechanical stimuli than were uninjured control fibres. This increase in mechanical sensitivity occurred in both A and C fibres, although A fibres showed a greater increase in mechano-sensitivity than C fibres. Over half of the regenerated nociceptors (13/25) showed after-discharge to mechanical stimuli which was never seen in controls; the mean firing rate during this period of after-discharge was significantly related to both stimulus intensity and stimulus area. 4. There was no significant difference between the heat encoding properties of regenerated nociceptors and control nociceptors. Cold sensitivity was similarly unchanged. Thus, abnormal peripheral sprouting was unlikely to account for the increased mechanical sensitivity of the regenerated fibres. None of the regenerated nociceptors were found to be coupled to other fibres. 5. These results suggest that the clinical observation of mechanical hyperalgesia in patients after nerve injury may have a peripheral basis. Based on this model, other signs of neuropathic pain (i.e. tactile or thermal allodynia) are more likely to be due to altered central processing.  (+info)

Cervical spondylotic myelopathy in elderly people: a high incidence of conduction block at C3-4 or C4-5. (32/3268)

OBJECTIVES: To precisely localise the site of conduction block in elderly patients with cervical spondylotic myelopathy in the presence of multilevel compression shown by MRI. METHODS: A total of 44 patients aged 65 and older underwent serial intervertebral recording of spinal somatosensory evoked potentials (SSEPs) from either the intervertebral disc or the ligamentum flavum after epidural stimulation. The site of conduction block identified by abrupt reduction in size of the negative peak was designated as the 0 level with the other levels numbered in order of distance assigning a minus sign caudally. RESULTS: A single site of focal conduction block was disclosed in 42 patients, 23 (55%) at C3-4, 17 (40%) at C4-5, and two (5%) at C5-6. At these levels (0), the amplitude of the negative component was reduced (p<0.0001) to 29% and the area to 22%, with a concomitant increase (p<0.0001) of the initial positive component to 150% in amplitude and 293% in area as compared to the-2 level which was taken as the baseline (100%). CONCLUSIONS: A high incidence (95%) of focal conduction block at C3-4 or C4-5 with normal conduction at C5-6 and C6-7 characterises cervical spondylotic myelopathy in elderly people. Incremental SSEP studies documenting the site of conduction block will help exclude clinically silent cord compression, directing the surgical intervention to the appropriate level of concern.  (+info)