Estrogen enhancement of baroreflex sensitivity is centrally mediated. (9/794)

We have recently shown that estrogen enhances baroreceptor control of reflex bradycardia in conscious rats. The present study replicated this finding in pentobarbital sodium-anesthetized rats, and the study was extended to investigate whether this effect of estrogen is centrally or peripherally mediated. Hemodynamic responses to electrical stimulation of the central end of the aortic depressor or the vagal efferent nerve were evaluated in pentobarbital sodium-anesthetized sham-operated (SO), ovariectomized (OVX), and OVX estradiol-treated Sprague-Dawley rats. Phenylephrine (1-16 microgram/kg iv) elicited dose-dependent pressor and bradycardic responses. Regression analysis of the baroreflex curves, relating changes in mean arterial pressure and heart rate, revealed a significantly smaller baroreflex sensitivity in OVX compared with SO anesthetized rats (-0.54 +/- 0.05 and -0.91 +/- 0.12 beats. min-1. mmHg-1, respectively; P < 0.05). Treatment of OVX rats with 17beta-estradiol (E2, 50 microgram. kg-1. day-1 for 2 days subcutaneously) significantly enhanced baroreflex sensitivity to a level similar to that of SO rats (P < 0.05). The enhancing effect of E2 on the baroreflex-mediated bradycardia, observed in conscious and anesthetized rats, seems to be selective because the baroreflex-mediated tachycardic responses measured in a separate group of conscious rats were not altered by ovariectomy or E2 administration. Electrical stimulation of the aortic nerve elicited frequency-dependent depressor and bradycardic responses that were significantly smaller in OVX compared with SO values (P < 0.05). Treatment of OVX rats with E2 restored the hemodynamic responses to aortic stimulation to near SO levels. On the other hand, hemodynamic responses to vagal stimulation were not affected by OVX or treatment with E2. These findings suggest that enhancement of reflex bradycardia by estrogen is centrally mediated and involves interaction with central projections of the aortic nerve.  (+info)

Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. (10/794)

Over the past decade, research on the neural basis of communication and jamming avoidance in gymnotiform electric fish has concentrated on comparative studies of the premotor control of these behaviors, on the sensory processing of communication signals and on their control through the endocrine system, and tackled the question of the degree to which these behaviors share neural elements in the sensory-motor command chain by which they are controlled. From this wealth of investigations, we learned, first, how several segregated premotor pathways controlling a single central pattern generator, the medullary pacemaker nucleus, can provide a large repertoire of behaviorally relevant motor patterns. The results suggest that even small evolutionary modifications in the premotor circuitry can yield extensive changes in the behavioral output. Second, we have gained some insight into the concerted action of the brainstem, the diencephalon and the long-neglected forebrain in sensory processing and premotor control of communication behavior. Finally, these studies shed some light on the behavioral significance of multiple sensory brain maps in the electrosensory lateral line lobe that long have been a mystery. From these latter findings, it is tempting to interpret the information processing in the electrosensory system as a first step in the evolution towards the 'distributed hierarchical' organization commonly realized in sensory systems of higher vertebrates.  (+info)

Maturation of the mammalian respiratory system. (11/794)

In this review, the maturational changes occurring in the mammalian respiratory network from fetal to adult ages are analyzed. Most of the data presented were obtained on rodents using in vitro approaches. In gestational day 18 (E18) fetuses, this network functions but is not yet able to sustain a stable respiratory activity, and most of the neonatal modulatory processes are not yet efficient. Respiratory motoneurons undergo relatively little cell death, and even if not yet fully mature at E18, they are capable of firing sustained bursts of potentials. Endogenous serotonin exerts a potent facilitation on the network and appears to be necessary for the respiratory rhythm to be expressed. In E20 fetuses and neonates, the respiratory activity has become quite stable. Inhibitory processes are not yet necessary for respiratory rhythmogenesis, and the rostral ventrolateral medulla (RVLM) contains inspiratory bursting pacemaker neurons that seem to constitute the kernel of the network. The activity of the network depends on CO2 and pH levels, via cholinergic relays, as well as being modulated at both the RVLM and motoneuronal levels by endogenous serotonin, substance P, and catecholamine mechanisms. In adults, the inhibitory processes become more important, but the RVLM is still a crucial area. The neonatal modulatory processes are likely to continue during adulthood, but they are difficult to investigate in vivo. In conclusion, 1) serotonin, which greatly facilitates the activity of the respiratory network at all developmental ages, may at least partly define its maturation; 2) the RVLM bursting pacemaker neurons may be the kernel of the network from E20 to adulthood, but their existence and their role in vivo need to be further confirmed in both neonatal and adult mammals.  (+info)

Heterothermal acclimation: an experimental paradigm for studying the control of thermal acclimation in crabs. (12/794)

A method for the study of the control of the attainment of thermal acclimation has been applied to the crabs, Cancer pagurus and Carcinus maenas. Crabs were heterothermally acclimated by using an anterior-posterior partition between two compartments, one at 8 degrees C and the other at 22 degrees C. One compartment held a three-quarter section of the crab including the central nervous system (CNS), eye stalks, and ipsilateral legs; the other held a quarter section including the contralateral legs. Criteria used to assess the acclimation responses were comparisons of muscle plasma membrane fatty acid composition and "fluidity." In both species, the major fatty acids of phosphatidylcholine were 16:0, 18:1, 20:5, and 22:6, whereas phosphatidylethanolamine contained significantly less 16:0 but more 18:0; these fatty acids comprised 80% of the total. Differences in fatty acid composition were demonstrated between fractions obtained from the ipsilateral and contralateral legs from the same heterothermally acclimated individual. In all acclimation states (except 22CNS, phosphatidylcholine fraction), membrane lipid saturation was significantly increased with acclimation at 22 degrees as compared with 8 degrees C. Membrane fluidity was determined by using 1,3-diphenyl-1,3,5 hexatriene (DPH) fluorescence polarization. In both species, membranes from legs held at 8 degrees were more fluid than from legs held at 22 degrees C irrespective of the acclimation temperature of the CNS. Heterothermal acclimation demonstrated that leg muscle membrane composition and fluidity respond primarily to local temperature and were not predominately under central direction. The responses between 8 degrees C- and 22 degrees C-acclimated legs were more pronounced when the CNS was cold-acclimated, so a central influence cannot be excluded.  (+info)

Neuroprotection at Drosophila synapses conferred by prior heat shock. (13/794)

Synapses are critical sites of information transfer in the nervous system, and it is important that their functionality be maintained under stressful conditions to prevent communication breakdown. Here we show that synaptic transmission at the Drosophila larval neuromuscular junction is protected by prior exposure to heat shock that strongly induces expression of heat shock proteins, in particular hsp70. Using a macropatch electrode to record synaptic activity at individual, visualized boutons, we found that prior heat shock sustains synaptic performance at high test temperatures through pre- and postsynaptic alterations. After heat shock, nerve impulses release more quantal units at high temperatures and exhibit fewer failures of release (presynaptic modification), whereas the amplitude of quantal currents remains more constant than does that in nonheat-shocked controls (postsynaptic modification). The time course of these physiological changes is similar to that of elevated hsp70. Thus, stress-induced neuroprotective mechanisms maintain function at synapses by modifying their properties.  (+info)

Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation. (14/794)

We used PET to explore the neurophysiological changes that accompany cognitive disability in ageing, with a focus on the frontal lobe. Absolute regional cerebral blood flow (rCBF) was measured in 41 healthy volunteers, evenly distributed across an age range of 18-80 years, during two task paradigms: (i) the Wisconsin Card Sorting Test (WCST), which depends heavily on working memory and is particularly sensitive to dysfunction of the dorsolateral prefrontal cortex (DLPFC); and (ii) Raven's Progressive Matrices (RPM), which may also have a working memory component, but depends more on visuo-spatial processing and is most sensitive to dysfunction of postrolandic regions. We used voxel-wise correlational mapping to determine age-related changes in WCST and RPM activation and developed a method to quantitate and localize statistical differences between the correlation maps for the two task paradigms. Because both WCST and RPM performance declined with age, as expected, correlational analyses were performed with and without partialling out the effect of task performance. Task-specific reductions of rCBF activation with age were found in the DLPFC during the WCST and in portions of the inferolateral temporal cortex involved in visuo-spatial processing during the RPM. We also found reduced ability to suppress rCBF in the right hippocampal region during the WCST and in mesial and polar portions of the prefrontal cortex during both task conditions. Task-dependent alterations with age in the relationship between the DLPFC and the hippocampus were also documented; because the collective pattern of changes in the hippocampal-DLPFC relationship with ageing was opposite to that seen in a previous study using dextroamphetamine, we postulated a dopaminergic mechanism. These results indicate that, despite some cognitive overlap between the two tasks and the age-related cognitive decline in both, many of the changes in rCBF activation with age were task-specific, reflecting functional alteration of the different neural circuits normally engaged by young subjects during the WCST and RPM. Reduced activation of areas critical for task performance (i.e. the DLPFC during the WCST and posterior visual association areas of the inferolateral temporal cortex during the RPM), in conjunction with the inability to suppress areas normally not involved in task performance (i.e. the left hippocampal region during the WCST and mesial polar prefrontal cortex during both the WCST and RPM), suggest that, overall, reduced ability to focus neural activity may be impaired in older subjects. The context dependency of the age-related changes is most consistent with systems failure and disordered connectivity.  (+info)

Effect of sinoaortic denervation on frequency-domain estimates of baroreflex sensitivity in conscious cats. (15/794)

In animals and humans, baroreceptor modulation of the sinus node in daily life can be studied by identification of the number of sequences in which systolic blood pressure (SBP) and pulse interval (PI) linearly decrease or increase for several beats. It is also studied by power spectral analysis of SBP and PI in regions where their powers are coherent, although, in contrast to the sequence method, whether this frequency-domain method specifically reflects the baroreceptor-heart rate reflex has not been adequately tested. We recorded intra-arterial BP for approximately 3.5 h in eight conscious cats, first intact and then 7-10 days after sinoaortic denervation (SAD). Sensitivity of baroreceptor-heart rate reflex was assessed in 120-s segments by the square root of the ratio of PI and SBP spectral powers (alpha) in the regions around 0.1 (MF) and 0.3 (HF) Hz, and coherence between PI and SBP spectral powers in MF and HF regions was computed. SAD increased overall SBP variability and reduced PI variability throughout the frequency range examined. SAD markedly reduced (P < 0.01) both alpha-MF (-65.6%) and alpha-HF (-79. 9%) and consistently reduced the number of coherent segments [i.e., where coherence (K2) > 0.5] and average coherence values in the MF region. In the HF region, however, SAD did not alter the number of coherent segments, and although average coherence value throughout the HF band was reduced, in restricted portions of the band (different between animals), a high coherence value survived denervation. No significant changes were seen in any measured variables in five sham-operated cats. Thus the frequency-domain method specifically reflects baroreflex modulation of heart rate in the MF region only. In the HF region, in contrast, baroreflex and nonbaroreflex influences on the sinus node both contribute to a variable degree to determination of heart rate responses to BP oscillations. If used to study baroreflex function in daily life, this method should use the coefficient derived from MF data.  (+info)

Visceral afferent activation-induced changes in sympathetic nerve activity and baroreflex sensitivity. (16/794)

The following experiments were done to determine whether changes in baroreflex sensitivity evoked by cervical vagus nerve stimulation are due to sympathoexcitation mediated by the parabrachial nucleus. The relative contribution of cardiopulmonary and general gastric afferents within the cervical vagus nerve to the depression in baroreflex sensitivity are also investigated. Male Sprague-Dawley rats anesthetized with thiobutabarbital sodium (50 mg/kg) were instrumented to measure blood pressure and heart rate or for the continuous monitoring of renal sympathetic nerve activity. Baroreflex sensitivity was measured using bolus injections of phenylephrine. Electrical stimulation of the cervical vagus (with or without the aortic depressor nerve) or the abdominal vagus nerve produced a significant increase in renal nerve activity and a decrease in baroreflex sensitivity. Both of these effects were blocked after the microinjection of lidocaine into the parabrachial nucleus before nerve stimulation. Therefore, we conclude that an increase in the activity of cardiac, pulmonary, or general gastric afferents mediated the increased sympathetic output and decreased baroreflex sensitivity via a pathway involving the parabrachial nucleus.  (+info)