Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. (33/6550)

Synaptic depression is a form of short-term plasticity exhibited by many synapses. Nonetheless, the functional significance of synaptic depression in oscillatory networks is not well understood. We show that, in a recurrent inhibitory network that includes an intrinsic oscillator, synaptic depression can give rise to two distinct modes of network operation. When the maximal conductance of the depressing synapse is small, the oscillation period is determined by the oscillator component. Increasing the maximal conductance beyond a threshold value activates a positive-feedback mechanism that greatly enhances the synaptic strength. In this mode, the oscillation period is determined by the strength and dynamics of the depressing synapse. Because of the regenerative nature of the feedback mechanism, the circuit can be switched from one mode of operation to another by a very small change in the maximal conductance of the depressing synapse. Our model was inspired by experimental work on the pyloric network of the lobster. The pyloric network produces a simple motor rhythm generated by a pacemaker neuron that receives feedback inhibition from a depressing synapse. In some preparations, elimination of the synapse had no effect on the period of the rhythm, whereas in other preparations, there was a significant decrease in the period. We propose that the pyloric network can operate in either of the two modes suggested by the model, depending on the maximal conductance of the depressing synapse.  (+info)

Nonlinear frequency-dependent synchronization in the developing hippocampus. (34/6550)

Synchronous population activity is present both in normal and pathological conditions such as epilepsy. In the immature hippocampus, synchronous bursting is an electrophysiological conspicuous event. These bursts, known as giant depolarizing potentials (GDPs), are generated by the synchronized activation of interneurons and pyramidal cells via GABAA, N-methyl-D-aspartate, and AMPA receptors. Nevertheless the mechanism leading to this synchronization is still controversial. We have investigated the conditions under which synchronization arises in developing hippocampal networks. By means of simultaneous intracellular recordings, we show that GDPs result from local cooperation of active cells within an integration period prior to their onset. During this time interval, an increase in the number of excitatory postsynaptic potentials (EPSPs) takes place building up full synchronization between cells. These EPSPs are correlated with individual action potentials simultaneously occurring in neighboring cells. We have used EPSP frequency as an indicator of the neuronal activity underlying GDP generation. By comparing EPSP frequency with the occurrence of synchronized GDPs between CA3 and the fascia dentata (FD), we found that GDPs are fired in an all-or-none manner, which is characterized by a specific threshold of EPSP frequency from which synchronous GDPs emerge. In FD, the EPSP frequency-threshold for GDP onset is 17 Hz. GDPs are triggered similarly in CA3 by appropriate periodic stimulation of mossy fibers. The frequency threshold for CA3 GDP onset is 12 Hz. These findings clarify the local mechanism of synchronization underlying bursting in the developing hippocampus, indicating that GDPs are fired when background levels of EPSPs or action potentials have built up full synchronization by firing at specific frequencies (>12 Hz). Our results also demonstrate that spontaneous EPSPs and action potentials are important for the initiation of synchronous bursts in the developing hippocampus.  (+info)

Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations Of coupled pacemaker neurons. (35/6550)

We have proposed models for the ionic basis of oscillatory bursting of respiratory pacemaker neurons in the pre-Botzinger complex. In this paper, we investigate the frequency control and synchronization of these model neurons when coupled by excitatory amino-acid-mediated synapses and controlled by convergent synaptic inputs modeled as tonic excitation. Simulations of pairs of identical cells reveal that increasing tonic excitation increases the frequency of synchronous bursting, while increasing the strength of excitatory coupling between the neurons decreases the frequency of synchronous bursting. Low levels of coupling extend the range of values of tonic excitation where synchronous bursting is found. Simulations of a heterogeneous population of 50-500 bursting neurons reveal coupling effects similar to those found experimentally in vitro: coupling increases the mean burst duration and decreases the mean burst frequency. Burst synchronization occurred over a wide range of intrinsic frequencies (0.1-1 Hz) and even in populations where as few as 10% of the cells were intrinsically bursting. Weak coupling, extreme parameter heterogeneity, and low levels of depolarizing input could contribute to the desynchronization of the population and give rise to quasiperiodic states. The introduction of sparse coupling did not affect the burst synchrony, although it did make the interburst intervals more irregular from cycle to cycle. At a population level, both parameter heterogeneity and excitatory coupling synergistically combine to increase the dynamic input range: robust synchronous bursting persisted across a much greater range of parameter space (in terms of mean depolarizing input) than that of a single model cell. This extended dynamic range for the bursting cell population indicates that cellular heterogeneity is functionally advantageous. Our modeled system accounts for the range of intrinsic frequencies and spiking patterns of inspiratory (I) bursting cells found in the pre-Botzinger complex in neonatal rat brain stem slices in vitro. There is a temporal dispersion in the spiking onset times of neurons in the population, predicted to be due to heterogeneity in intrinsic neuronal properties, with neurons starting to spike before (pre-I), with (I), or after (late-I) the onset of the population burst. Experimental tests for a number of the model's predictions are proposed.  (+info)

Monoamine control of the pacemaker kernel and cycle frequency in the lobster pyloric network. (36/6550)

The monoamines dopamine (DA), serotonin (5HT), and octopamine (Oct) can each sculpt a unique motor pattern from the pyloric network in the stomatogastric ganglion (STG) of the spiny lobster Panulirus interruptus. In this paper we investigate the contribution of individual network components in determining the specific amine-induced cycle frequency. We used photoinactivation of identified neurons and pharmacological blockade of synapses to isolate the anterior burster (AB) and pyloric dilator (PD) neurons. Bath application of DA, 5HT, or Oct enhanced cycle frequency in an isolated AB neuron, with DA generating the most rapid oscillations and Oct the slowest. When an AB-PD or AB-2xPD subnetworks were tested, DA often reduced the ongoing cycle frequency, whereas 5HT and Oct both evoked similar accelerations in cycle frequency. However, in the intact pyloric network, both DA and Oct either reduced or did not alter the cycle frequency, whereas 5HT continued to enhance the cycle frequency as before. Our results show that the major target of 5HT in altering the pyloric cycle frequency is the AB neuron, whereas DA's effects on the AB-2xPD subnetwork are critical in understanding its modulation of the cycle frequency. Octopamine's effects on cycle frequency require an understanding of its modulation of the feedback inhibition to the AB-PD group from the lateral pyloric neuron, which constrains the pacemaker group to oscillate more slowly than it would alone. We have thus demonstrated that the relative importance of the different network components in determining the final cycle frequency is not fixed but can vary under different modulatory conditions.  (+info)

The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. (37/6550)

Recent research indicates that non-tonal novel events, deviating from an ongoing auditory environment, elicit a positive event-related potential (ERP), the novel P3. Although a variety of studies examined the neural network engaged in novelty detection, there is no complete picture of the underlying brain mechanisms. This experiment investigated these neural mechanisms by combining ERP and functional magnetic resonance imaging (fMRI). Hemodynamic and electrophysiological responses were measured in the same subjects using the same experimental design. The ERP analysis revealed a novel P3, while the fMRI responses showed bilateral foci in the middle part of the superior temporal gyrus. When subjects attended to the novel stimuli only identifiable novel sounds evoked a N4-like negativity. Subjects showing a strong N4-effect had additional fMRI activation in right prefrontal cortex (rPFC) as compared to subjects with a weak N4-effect. This pattern of results suggests that novelty processing not only includes the registration of deviancy but may also lead to a fast access and retrieval of related semantic concepts. The fMRI activation pattern suggests that the superior temporal gyrus is involved in novelty detection, whereas accessing and retrieving semantic concepts related to novel sounds additionally engages the rPFC.  (+info)

Distinct functions for cotransmitters mediating motor pattern selection. (38/6550)

Motor patterns are selected from multifunctional networks by selective activation of different projection neurons, many of which contain multiple transmitters. Little is known about how any individual projection neuron uses its cotransmitters to select a motor pattern. We address this issue by using the stomatogastric ganglion (STG) of the crab Cancer borealis, which contains a neuronal network that generates multiple versions of the pyloric and gastric mill motor patterns. The functional flexibility of this network results mainly from modulatory inputs it receives from projection neurons that originate in neighboring ganglia. We demonstrated previously that the STG motor pattern selected by activation of the modulatory proctolin neuron (MPN) results from direct MPN modulation of the pyloric rhythm and indirect MPN inhibition of the gastric mill rhythm. The latter action results from MPN inhibition of projection neurons that excite the gastric mill rhythm. These projection neurons are modulatory commissural neuron 1 (MCN1) and commissural projection neuron 2 (CPN2). MPN excitation of the pyloric rhythm is mimicked by bath application of proctolin, its peptide transmitter. Here, we show that MPN uses only its small molecule transmitter, GABA, to inhibit MCN1 and CPN2 within their ganglion of origin. We also demonstrate that MPN has no proctolin-mediated influence on MCN1 or CPN2, although exogenously applied proctolin directly excites these neurons. Thus, motor pattern selection occurs during MPN activation via proctolin actions on the STG network and GABA-mediated actions on projection neurons in the commissural ganglia, demonstrating a spatial and functional segregation of cotransmitter actions.  (+info)

Fast network oscillations in the hippocampal CA1 region of the behaving rat. (39/6550)

This study examined intermittent, high-frequency (100-200 Hz) oscillatory patterns in the CA1 region of the hippocampus in the absence of theta activity, i.e., during and in between sharp wave (SPW) bursts. Pyramidal and interneuronal activity was phase-locked not only to large amplitude (>7 SD from baseline) oscillatory events, which are present mainly during SPWs, but to smaller amplitude (<4 SD) patterns, as well. Large-amplitude events were in the 140-200 Hz, "ripple" frequency range. Lower-amplitude events, however, contained slower, 100-130 Hz ("slow") oscillatory patterns. Fast ripple waves reversed just below the CA1 pyramidal layer, whereas slow oscillatory potentials reversed in the stratum radiatum and/or in the stratum oriens. Parallel CA1-CA3 recordings revealed correlated CA3 field and unit activity to the slow CA1 waves but not to fast ripple waves. These findings suggest that fast ripples emerge in the CA1 region, whereas slow (100-130 Hz) oscillatory patterns are generated in the CA3 region and transferred to the CA1 field.  (+info)

Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord. (40/6550)

We have studied the effects of the biogenic amine noradrenaline (NA) on motor activity in the isolated neonatal rat spinal cord. The motor output was recorded with suction electrodes from the lumbar ventral roots. When applied on its own, NA (0.5-50 microM) elicited either no measurable root activity, or activity of a highly variable nature. When present, the NA-induced activity consisted of either low levels of unpatterned tonic discharges, or an often irregular, slow rhythm that displayed a high degree of synchrony between antagonistic motor pools. Finally, in a few cases, NA induced a slow locomotor-like rhythm, in which activity alternated between the left and right sides, and between rostral and caudal roots on the same side. As shown previously, stable locomotor activity could be induced by bath application of N-methyl-D-aspartate (NMDA; 4-8.5 microM) and/or serotonin (5-HT; 4-20 microM). NA modulated this activity by decreasing the cycle frequency and increasing the ventral root burst duration. These effects were dose dependent in the concentration range 1-5 microM. In contrast, at no concentration tested did NA have consistent effects on burst amplitudes or on the background activity of the ongoing rhythm. Moreover, NA did not obviously affect the left/right and rostrocaudal alternation of the NMDA/5-HT rhythm. The NMDA/5-HT locomotor rhythm sometimes displayed a time-dependent breakdown in coordination, ultimately resulting in tonic ventral root activity. However, the addition of NA to the NMDA/5-HT saline could reinstate a well-coordinated locomotor rhythm. We conclude that exogenously applied NA can elicit tonic activity or can trigger a slow, irregular and often synchronous motor pattern. When NA is applied during ongoing locomotor activity, the amine has a distinct slowing effect on the rhythm while preserving the normal coordination between flexors and extensors. The ability of NA to "rescue" rhythmic locomotor activity after its time-dependent deterioration suggests that the amine may be important in the maintenance of rhythmic motor activity.  (+info)