Capsaicin-sensitive C-fiber-mediated protective responses in ozone inhalation in rats. (9/3208)

To assess the role of lung sensory C fibers during and after inhalation of 1 part/million ozone for 8 h, we compared breathing pattern responses and epithelial injury-inflammation-repair in rats depleted of C fibers by systemic administration of capsaicin as neonates and in vehicle-treated control animals. Capsaicin-treated rats did not develop ozone-induced rapid, shallow breathing. Capsaicin-treated rats showed more severe necrosis in the nasal cavity and greater inflammation throughout the respiratory tract than did control rats exposed to ozone. Incorporation of 5-bromo-2'-deoxyuridine (a marker of DNA synthesis associated with proliferation) into terminal bronchiolar epithelial cells was not significantly affected by capsaicin treatment in rats exposed to ozone. However, when normalized to the degree of epithelial necrosis present in each rat studied, there was less 5-bromo-2'-deoxyuridine labeling in the terminal bronchioles of capsaicin-treated rats. These observations suggest that the ozone-induced release of neuropeptides does not measurably contribute to airway inflammation but may play a role in modulating basal and reparative airway epithelial cell proliferation.  (+info)

Activity-dependent slowing of conduction differentiates functional subtypes of C fibres innervating human skin. (10/3208)

1. The effects of impulse activity on conduction in cutaneous C fibres have been examined in 46 microneurographic recordings from 11 normal subjects and 11 diabetic patients with normal nerve conduction. A tungsten microelectrode was inserted into a cutaneous nerve, usually the superficial peroneal close to the ankle, and intraneural microstimulation was used to identify an area of skin innervated. Three minute trains of 0.25 ms stimuli at 1, 2 and 4 Hz were then delivered to the surface of the skin, separated by intervals of 6 min with stimulation at 0.25 Hz. Slowing and block of conduction were measured from the nerve responses for up to seven C units per stimulation sequence. 2. Three types of C unit were distinguished by their responses to repetitive stimulation: type 1 units slowed progressively during the 3 min trains; slowing of type 2 units reached a plateau within 1 min; while type 3 units hardly slowed at all. Data from normal and diabetic subjects did not differ and were pooled. After 3 min at 2 Hz, the percentage increases in latency were for type 1, 28.3 +/- 9.7 (n = 63 units, mean +/- s.d.); for type 2, 5.2 +/- 1.6 (n = 14); and for type 3, 0.8 +/- 0.5 (n = 5), with no overlap. After 3 min at 4 Hz, 58 % of type 1 units (but no type 2 or 3 units) blocked intermittently. Recovery of latency after stimulation was faster for type 2 than for type 1 units, but conduction velocities of the three types were similar. 3. Type 1 units were identified as nociceptors and 7 type 2 units were identified as 'cold' fibres, activated by non-noxious cold, with no overlap in modality. None of the units tested was activated by weak mechanical stimuli or reflex sympathetic activation. 4. Spike waveforms were averaged for 18 type 1, 10 type 2 and 6 type 3 units. All units had predominantly triphasic action potentials with a major negative peak, but those of type 3 units were on average both smaller and briefer than those of type 1 and type 2 units. 5. It is concluded that repetitive electrical stimulation reliably differentiates nociceptive from cold-specific C fibres innervating human hairy skin, as has previously been shown for the rat. Cold fibres can propagate impulses continuously at much higher rates than nociceptive fibres. The nature of the type 3 units is unclear.  (+info)

Directional and spectral reflectance of the rat retinal nerve fiber layer. (11/3208)

PURPOSE: To measure and describe the reflectance properties of a mammalian retinal nerve fiber layer (RNFL) and to determine the mechanisms responsible for the RNFL reflectance. METHODS: An isolated rat retina suspended across a slit in a black membrane and mounted in a black perfusion chamber provided high quality images of the RNFL. Imaging microreflectometry was used to measure RNFL reflectance at wavelengths from 400 nm to 830 nm and as a function of illumination angle. RESULTS: The directional reflectance of rat RNFL at all wavelengths was consistent with the theory of light scattering by cylinders; each nerve fiber bundle scattered light into a conical sheet coaxial with the bundle. There was no evidence of a noncylindrical component at any wavelength. Measured reflectance spectra were consistent between animals, similar to ones previously measured in macaque, and varied with scattering angle. All spectra could be described by a two-mechanism cylindrical scattering model with three free parameters. CONCLUSIONS: At all wavelengths the reflectance of rat RNFL arises from light scattering by cylindrical structures. The highly directional nature of this reflectance can be an important source of measurement variability in clinical assessment of the RNFL. The reflectance spectra reveal a combination of mechanisms: At wavelengths shorter than approximately 570 nm the reflectance comes from cylinders with diameters much smaller than the wavelength, but at wavelengths longer than approximately 680 nm the reflectance comes from cylinders with effective diameters of 350 nm to 900 nm.  (+info)

Paradoxical heat sensation in healthy subjects: peripherally conducted by A delta or C fibres? (12/3208)

Paradoxical heat sensation upon cooling of the skin has been reported in central as well as in peripheral neurological conditions. In our study, we examined this phenomenon in 35 naive healthy test subjects, of whom 23 experienced paradoxical heat sensation under test conditions. We measured the peripheral conduction velocities of cold sensation, warm sensation and of paradoxical heat sensation by using a quantitative sensory testing model of indirect peripheral conduction velocity measurement. This was based on comparison of measurements at a proximal and a distal site using two measurement methods, one inclusive and the other exclusive of reaction time. We found that the conduction velocity of paradoxical heat sensation (0.70 m/s) was similar to that of warm sensation (0.68 m/s), and that the conduction velocity of cold sensation (7.74-8.01 m/s) was considerably faster. Thus, we conclude that paradoxical heat sensation in healthy subjects is conducted peripherally via slow unmyelinated C fibres and not via the faster A delta fibres. Consequently, we propose that paradoxical heat sensation is encoded via the heat sensing pathway, in accordance with the labelled-line code theory. The mechanisms proposed suggest a malfunctioning cold-sensing pathway disinhibiting the heat-sensing pathway, at peripheral, central or both levels, thus facilitating a paradoxical heat sensation.  (+info)

Evaluation of focal defects of the nerve fiber layer using optical coherence tomography. (13/3208)

OBJECTIVE: To analyze glaucomatous eyes with known focal defects of the nerve fiber layer (NFL), relating optical coherence tomography (OCT) findings to clinical examination, NFL and stereoscopic optic nerve head (ONH) photography, and Humphrey 24-2 visual fields. DESIGN: Cross-sectional prevalence study. PARTICIPANTS: The authors followed 19 patients in the study group and 14 patients in the control group. INTERVENTION: Imaging with OCT was performed circumferentially around the ONH with a circle diameter of 3.4 mm using an internal fixation technique. One hundred OCT scan points taken within 2.5 seconds were analyzed. MAIN OUTCOME MEASURES: Measurements of NFL thickness using OCT were performed. RESULTS: In most eyes with focal NFL defects, OCTs showed significant thinning of the NFL in areas closely corresponding to focal defects visible on clinical examination, to red-free photographs, and to defects on the Humphrey visual fields. Optical coherence tomography enabled the detection of focal defects in the NFL with a sensitivity of 65% and a specificity of 81%. CONCLUSION: Analysis of NFL thickness in eyes with focal defects showed good structural and functional correlation with clinical parameters. Optical coherence tomography contributes to the identification of focal defects in the NFL that occur in early stages of glaucoma.  (+info)

Structural maturation of neural pathways in children and adolescents: in vivo study. (14/3208)

Structural maturation of fiber tracts in the human brain, including an increase in the diameter and myelination of axons, may play a role in cognitive development during childhood and adolescence. A computational analysis of structural magnetic resonance images obtained in 111 children and adolescents revealed age-related increases in white matter density in fiber tracts constituting putative corticospinal and frontotemporal pathways. The maturation of the corticospinal tract was bilateral, whereas that of the frontotemporal pathway was found predominantly in the left (speech-dominant) hemisphere. These findings provide evidence for a gradual maturation, during late childhood and adolescence, of fiber pathways presumably supporting motor and speech functions.  (+info)

NOS inhibitor antagonism of PGE2-induced mechanical sensitization of cutaneous C-fiber nociceptors in the rat. (15/3208)

Prostaglandins, metabolites of arachidonic acid, released during tissue injury and inflammation sensitize primary afferent nociceptors. While it has been suggested that this effect on nociceptors is mediated mainly via the cAMP second messenger system, recent evidence suggests that nitric oxide (NO) is also involved in peripheral pain mechanisms. To test the hypothesis that NO contributes to the sensitization of nociceptors to mechanical stimuli induced by hyperalgesic prostaglandins, we compared von Frey hair mechanical threshold as well as the response evoked by 10-s sustained threshold mechanical stimulation before and after injection of prostaglandin E2 (PGE2) alone, and NOS inhibitor NG-methyl-L-arginine (L-NMA) or its inactive stereoisomer NG-methyl-D-arginine (D-NMA) plus PGE2, adjacent to the receptive field of C-fiber nociceptors. The reduction of mechanical threshold and increase in number of action potentials to sustained mechanical stimulation induced by intradermal application of PGE2 was blocked by L-NMA, but not D-NMA. It is suggested that NO contributes to nociceptor sensitization induced by hyperalgesic prostaglandins.  (+info)

Projections and firing properties of down eye-movement neurons in the interstitial nucleus of Cajal in the cat. (16/3208)

To clarify the role of the interstitial nucleus of Cajal (INC) in the control of vertical eye movements, projections of burst-tonic and tonic neurons in and around the INC were studied. This paper describes neurons with downward ON directions. We examined, by antidromic activation, whether these down INC (d-INC) neurons contribute to two pathways: a commissural pathway to the contralateral (c-) INC and a descending pathway to the ipsilateral vestibular nucleus (i-VN). Stimulation of the two pathways showed that as many as 74% of neurons were activated antidromically from one of the pathways. Of 113 d-INC neurons tested, 44 were activated from the commissural pathway and 40 from the descending pathway. No neurons were activated from both pathways. We concluded that commissural and descending pathways from the INC originate from two separate groups of neurons. Tracking of antidromic microstimulation in the two nuclei revealed multiple low-threshold sites and varied latencies; this was interpreted as a sign of existence of axonal arborization. Neurons with commissural projections tended to be located more dorsally than those with descending projections. Neurons with descending projections had significantly greater eye-position sensitivity and smaller saccadic sensitivity than neurons with commissural projections. The two groups of INC neurons increased their firing rate in nose-up head rotations and responded best to the rotation in the plane of contralateral posterior/ipsilateral anterior canal pair. Neurons with commissural projections showed a larger phase lag of response to sinusoidal rotation (54.6 +/- 7.6 degrees ) than neurons with descending projections (45.0 +/- 5.5 degrees ). Most neurons with descending projections received disynaptic excitation from the contralateral vestibular nerve. Neurons with commissural projections rarely received such disynaptic input. We suggest that downward-position-vestibular (DPV) neurons in the VN and VN-projecting d-INC neurons form a loop, together with possible commissural loops linking the bilateral VNs and the bilateral INCs. By comparing the quantitative measures of d-INC neurons with those of DPV neurons, we further suggest that integration of head velocity signals proceeds from DPV neurons to d-INC neurons with descending projections and then to d-INC neurons with commissural projections, whereas saccadic velocity signals are processed in the reverse order.  (+info)