Isolation and purification of rat mammary tumor peroxidase. (1/1415)

7,12-Dimethylbenz(a)anthracene-induced rat mammary tumors often contain high levels of the enzyme perioxidase, a putative marker of estrogen dependence. This enzyme can be effectively extracted with 0.5 M CaCl2, giving rise to a soluble peroxidase with a molecular weight of about 50,000 as determined by gel filtration. This is the same size as the estrogen-induced peroxidase of rat uterus but smaller than other mammalian peroxidases. Further purification of the rat mammary tumor peroxidase by concanavalin A-Sepharose chromatography and hydrophobic interaction chromatography on phenyl Sepharose provides a 640-fold purification of the enzyme.  (+info)

Vasopressin stimulation of acetate incorporation into lipids in a dimethylbenz(a)anthracene-induced rat mammary tumor cell line. (2/1415)

In a preliminary report we described the effects of rat prolactin on the incorporation of [14C]acetate into lipids by a cell line from a dimethylbenz(a)anthracene-induced rat mammary tumor. The characteristics of the response to prolactin were very similar to those described for the normal rat mammary gland; namely, insulin was required for full expression of the response, maximal activity was not seen until 36 hr after the addition of the hormones, and growth hormone was able to elicit the same response. However, we were unable to detect binding of 125I-labeled prolactin to these cells, and furthermore, other more purified prolactin preparations were inactive. Upon further investigation we discovered that the activity resided in a low-molecular-weight fraction of the rat prolactin B-1 preparation and was probably either vasopressin or oxytocin or both. These data suggest the possibility that vasopressin may play a role in rodent mammary tumorigenesis.  (+info)

Cooperative therapeutic effects of androgen ablation and adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy in experimental prostate cancer. (3/1415)

Adenovirus-mediated transduction of the herpes simplex thymidine kinase gene (HSV-tk) in conjunction with ganciclovir (GCV) has been shown to result in significant growth suppression and to enhance survival in a model of mouse prostate cancer. However, this therapeutic activity is not sustained, because in most cases tumors eventually regrow and ultimately cause the death of the host. Androgen ablation, an inducer of apoptosis in prostate cells which is used widely as palliative therapy in patients with prostate cancer, was combined with HSV-tk plus GCV using an androgen-sensitive mouse prostate cancer cell line. The combination of castration and HSV-tk plus GCV led to markedly enhanced tumor growth suppression in both subcutaneous and orthotopic models compared with either treatment alone and resulted in an enhanced survival in which combination-treated animals lived twice as long as controls in the subcutaneous model and over 50% longer than controls in the orthotopic model. Further analysis of apoptotic activity demonstrated high levels of apoptosis only in combined androgen ablation and HSV-tk plus GCV-treated tumors after 14 days of growth in an androgen-depleted environment and 8 days after HSV-tk plus GCV therapy. At this time, the apoptotic index, but not the percent of necrotic tissue, was significantly higher for combination therapy-treated tumors relative to control-treated tumors or either treatment alone. These data indicate that the therapeutic effects of androgen ablation and HSV-tk plus GCV are cooperative and that increased apoptosis may, in part, underlie these activities.  (+info)

Polyamine biosynthesis inhibitors alter protein-protein interactions involving estrogen receptor in MCF-7 breast cancer cells. (4/1415)

We investigated the effects of polyamine biosynthesis inhibition on the estrogenic signaling pathway of MCF-7 breast cancer cells using a protein-protein interaction system. Estrogen receptor (ER) linked to glutathione-S-transferase (GST) was used to examine the effects of two polyamine biosynthesis inhibitors, difluoromethylornithine (DFMO) and CGP 48664. ER was specifically associated with a 45 kDa protein in control cells. In cells treated with estradiol, nine proteins were associated with ER. Cells treated with polyamine biosynthesis inhibitors in the absence of estradiol retained the binding of their ER with a 45 kDa protein and the ER also showed low-affinity interactions with a number of cellular proteins; however, these associations were decreased by the presence of estradiol and the inhibitors. When samples from the estradiol+DFMO treatment group were incubated with spermidine prior to GST-ER pull down assay, an increased association of several proteins with ER was detected. The intensity of the ER-associated 45 kDa protein increased by 10-fold in the presence of 1000 microM spermidine. These results indicate a specific role for spermidine in ER association of proteins. Western blot analysis of samples eluted from GST-ER showed the presence of chicken ovalbumin upstream promoter-transcription factor, an orphan nuclear receptor, and the endogenous full-length ER. These results show that multiple proteins associate with ER and that the binding of some of these proteins is highly sensitive to intracellular polyamine concentrations. Overall, our results indicate the importance of the polyamine pathway in the gene regulatory function of estradiol in breast cancer cells.  (+info)

Protective effects of pregnancy and lactation against N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis rats. (5/1415)

The role of parity before and after N-methyl-N-nitrosourea (MNU) treatment in protection against mammary carcinogenesis was investigated. The effect of lactation on reduction in the incidence of mammary carcinoma was also examined. Parous rats were compared with respective age-matched virgins (AMVs). Pregnancy and lactation prior to MNU exposure significantly reduced both the incidence of mammary carcinoma (22 versus 72%) and the average number of mammary carcinomas per rat (0.22 versus 0.86) and significantly prolonged the latency of the carcinomas (247 versus 215 days). Pregnancy and lactation following MNU exposure also significantly reduced both the incidence of mammary carcinoma (25 versus 94%) and the average number of mammary carcinomas per rat (0.25 versus 1.50) and significantly prolonged the latency (240 versus 155 days). Lactation showed an additive effect on the reduction in mammary cancer. Pregnancy suppressed the number of estrogen receptor (ER)- and progesterone receptor (PgR)-positive cells and lowered the cell proliferation rate in the non-tumoral mammary glands. Since the majority (>76%) of the mammary carcinomas was hormone dependent in both the parous and AMV rats, pregnancy and lactation appear to decrease the ER- and/or PgR-positive cells presumed to be the progenitors of hormone-dependent carcinomas and they lowered the cell turnover necessary for tumor promotion in parous rats, resulting in a lower mammary carcinoma yield.  (+info)

Induction of mammary carcinomas by N-methyl-N-nitrosourea in ovariectomized rats treated with epidermal growth factor. (6/1415)

The importance of epidermal growth factor (EGF) in both normal and malignant mammary gland development are presented in these studies. Initial findings demonstrated that in the absence of ovarian hormones, EGF had a significant proliferative effect on mammary epithelial cells. To determine whether mammary epithelial cells grown with EGF, in the absence of ovarian hormones, could be transformed by N-methyl-N-nitrosourea (MNU), female ovariectomized Lewis rats were implanted with pellets containing EGF for 1 week and then treated with MNU for initiation. Two days after MNU treatment, ovaries were implanted and EGF pellets were removed from all ovariectomized groups in order to promote carcinogenesis. The mammary carcinoma incidence of the EGF-stimulated group (90%) was not significantly different from the intact group (100%). The mammary cancer morphology of EGF-treated carcinomas was either ductal carcinoma or cribriform adenocarcinoma, whereas intact animals developed mainly papillary and occasional cribriform carcinomas. Fifty-eight percent of the carcinomas from the EGF group were ovarian hormone-independent compared with 10% of carcinomas from the intact group. These results demonstrate that EGF-induced proliferation during initiation with MNU was sufficient to induce the transformation of mammary carcinomas in the absence of ovarian hormones. The hormonal dependency of these EGF-induced carcinomas were different compared with MNU-initiated mammary carcinomas in intact rats.  (+info)

Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. (7/1415)

Currently, no curative therapy for metastatic prostate cancer exists. Causing prostate cancer cells to express functionally active sodium iodide symporter (NIS) would enable those cells to concentrate iodide from plasma and might offer the ability to treat prostate cancer with radioiodine. Therefore, the aim of our study was to achieve tissue-specific expression of full-length human NIS (hNIS) cDNA in the androgen-sensitive human prostatic adenocarcinoma cell line LNCaP and in subcell lines C4, C4-2, and C4-2b in vitro. For this purpose, an expression vector was generated in which full-length hNIS cDNA coupled to the prostate-specific antigen (PSA) promoter has been ligated into the pEGFP-1 vector (NIS/PSA-pEGFP-1). The PSA promoter is responsible for androgen-dependent expression of PSA in benign and malignant prostate cells and was therefore used to mediate androgen-dependent prostate-specific expression of NIS. In addition, two control vectors were designed, which consist of the pEGFP-1 vector containing the PSA promoter without NIS cDNA (PSA-pEGFP-1) and NIS cDNA without the PSA promoter (NIS-pEGFP-1). Prostate cancer cells were transiently transfected with each of the above-described expression vectors, incubated with or without androgen (mibolerone) for 48 h, and monitored for iodide uptake activity. In addition, stably transfected LNCaP cell lines were established for each vector. Prostate cells transfected with NIS/PSA-pEGFP-1 showed perchlorate-sensitive, androgen-dependent iodide uptake in a range comparable to that observed in control cell lines transfected with hNIS cDNA. Perchlorate-sensitive iodide uptake was not observed in cells transfected with NIS/PSA-pEGFP-1 and treated without androgen or in cells transfected with the control vectors. In addition, prostate cancer cell lines without PSA expression (PC-3 and DU-145) did not show iodide uptake activity when transfected with NIS/PSA-pEGFP-1. Western blotting of LNCaP and C4-2b cell membranes transfected with NIS/PSA-pEGFP-1 using a monoclonal antibody that recognizes the COOH-terminus of hNIS revealed a band with a molecular weight of 90,000 that was not detected in androgen-deprived cells or in cells transfected with the control vectors, as well as a minor band at Mr 150,000 in transiently transfected LNCaP cell membranes. In conclusion, tissue-specific androgen-dependent iodide uptake activity has been induced in prostate cancer cells by PSA promoter-directed NIS expression. This study represents an initial step toward therapy of prostate cancer with radioiodine.  (+info)

The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. (8/1415)

We have characterized the temporal expression of the insulin-like growth factor (IGF) axis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model as prostate cancer progression in this model closely mimics that observed in the human disease, and the model provides samples representing the earliest stages of prostate cancer that are clinically the most difficult to obtain. We report that prostate-specific IGF-I mRNA expression increased during prostate cancer progression in TRAMP mice and was elevated in the accompanying metastatic lesions, whereas prostatic IGF-I mRNA remained at nontransgenic levels in androgen-independent disease. Expression of IGF-II mRNA, however, was reduced in primary prostate cancer, metastatic lesions, and androgen-independent disease. Expression of type-1 IGF receptor (IGF1R) mRNA, encoding the cognate receptor for both IGF-I and IGF-II, as well as type-2 IGF receptor (IGF2R) mRNA was not found to be altered during primary prostate cancer progression in intact TRAMP mice but was dramatically reduced in metastatic lesions and in androgen-independent disease. Similar to reports from clinical disease, serum IGF-I levels were observed to increase precociously in TRAMP mice early in disease progression but remained at nontransgenic levels after castration. Elevated serum levels of IGF-binding protein 2 were observed to correlate with advanced prostate cancer in the TRAMP model. Together these observations implicate IGF-I as an important factor during the initiation and progression of primary prostate cancer and provide evidence that there is a strong selection against expression of IGF1R and IGF2R in metastatic and androgen-independent disease.  (+info)