Azurin, Plasmodium falciparum malaria and HIV/AIDS: inhibition of parasitic and viral growth by Azurin. (73/381)

Azurin, a member of a family of copper-containing proteins involved in electron transfer called cupredoxins, demonstrates structural features similar to the variable domains of the immunoglobulin superfamily members. An azurin-like protein called Laz with an additional N-terminal 39 amino acid peptide known as H.8 epitope is present on the surface of gonnococci and meningococci. We demonstrate that azurin, Laz and H.8-azurin can bind to the C-terminal cleavage product MSP1-19 of merozoite surface protein 1 (MSP1) of the malarial parasite Plasmodium falciparum and significantly reduce parasitemia. Azurin and Laz also bound strongly to HIV-1 gp120. Interestingly, azurin could not only bind to gp120 but also to the dendritic cell-specific adhesion receptor DC-SIGN, mimicking the functionality of the intercellular adhesion molecule ICAM-3 with which it also binds avidly. Furthermore, these three proteins significantly suppressed HIV-1 growth in peripheral blood mononuclear cells and such suppression appeared to be occurring at an entry stage in the infection process. The presence of both antimalarial and antiretroviral activity in azurin, H.8-azurin and Laz makes these proteins, or peptides derived from them, potential therapeutic agents in the treatment of malaria, HIV-1 infections or coinfections with both P. falciparum and HIV-1.  (+info)

Classification of Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. (74/381)

A polyphasic taxonomic study was performed on isolates classified as Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b. Comparative 16S rRNA gene sequence analysis confirmed that group EF-4a and EF-4b belong to the genus Neisseria with Neisseria canis and Neisseria dentiae as the nearest phylogenetic neighbours. DNA-DNA hybridizations and biochemical analyses demonstrated that isolates of group EF-4a and EF-4b represent two novel species within this sublineage of the genus Neisseria. Based on the results of the present study, isolates of group EF-4a and EF-4b are classified as Neisseria animaloris sp. nov. (type strain LMG 23011(T)=NCTC 12228(T)) and Neisseria zoodegmatis sp. nov. (type strain LMG 23012(T)=NCTC 12230(T)), respectively.  (+info)

Pyrosequencing of the DNA gyrase gene in Neisseria species: effective indicator of ciprofloxacin resistance in Neisseria gonorrhoeae. (75/381)

The quinolone resistance determining region (QRDR) of the gyrA gene in ciprofloxacin-susceptible strains (n=53) and strains of Neisseria spp. with reduced susceptibility (n=70) was determined by the pyrosequencing method. Results showed that the QRDR of the gyrA gene is an effective molecular indicator of resistance to ciprofloxacin in Neisseria gonorrhoeae, and presumably in Neisseria meningitidis, but not in all other Neisseria spp. This sequence was not unique for N. gonorrhoeae and seems unsuitable for species verification of N. gonorrhoeae. However, whether it is also possible to use this region for verification depends on the specificity of the primary screening method used.  (+info)

Ring structure of the Escherichia coli DNA-binding protein RdgC associated with recombination and replication fork repair. (76/381)

The DNA-binding protein, RdgC, is associated with recombination and replication fork repair in Escherichia coli and with the virulence-associated, pilin antigenic variation mediated by RecA and other recombination proteins in Neisseria species. We solved the structure of the E. coli protein and refined it to 2.4A. RdgC crystallizes as a dimer with a head-to-head, tail-to-tail organization forming a ring with a 30 A diameter hole at the center. The protein fold is unique and reminiscent of a horseshoe with twin gates closing the open end. The central hole is lined with positively charged residues and provides a highly plausible DNA binding channel consistent with the nonspecific mode of binding detected in vitro and with the ability of RdgC to modulate RecA function in vivo.  (+info)

A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. (77/381)

This article describes the construction of a set of versatile expression vectors based on the In-Fusion cloning enzyme and their use for high-throughput cloning and expression screening. Modifications to commonly used vectors rendering them compatible with In-Fusion has produced a ligation-independent cloning system that is (1) insert sequence independent (2) capable of cloning large PCR fragments (3) efficient over a wide (20-fold) insert concentration range and (4) applicable to expression in multiple hosts. The system enables the precise engineering of (His(6)-) tagged constructs with no undesirable vector or restriction-site-derived amino acids added to the expressed protein. The use of a multiple host-enabled vector allows rapid screening in both E. coli and eukaryotic hosts (HEK293T cells and insect cell hosts, e.g. Sf9 cells). These high-throughput screening activities have prompted the development and validation of automated protocols for transfection of mammalian cells and Ni-NTA protein purification.  (+info)

Chloramphenicol is a substrate for a novel nitroreductase pathway in Haemophilus influenzae. (78/381)

The p-nitroaromatic antibiotic chloramphenicol has been used extensively to treat life-threatening infections due to Haemophilus influenzae and Neisseria meningitidis; its mechanism of action is the inhibition of protein synthesis. We found that during incubation with H. influenzae cells and lysates, chloramphenicol is converted to a 4-aminophenyl allylic alcohol that lacks antibacterial activity. The allylic alcohol moiety undergoes facile re-addition of water to restore the 1,3-diol, as well as further dehydration driven by the aromatic amine to form the iminoquinone. Several Neisseria species and most chloramphenicol-susceptible Haemophilus species, but not Escherichia coli or other gram-negative or gram-positive bacteria we examined, were also found to metabolize chloramphenicol. The products of chloramphenicol metabolism by species other than H. influenzae have not yet been characterized. The strains reducing the antibiotic were chloramphenicol susceptible, indicating that the pathway does not appear to mediate chloramphenicol resistance. The role of this novel nitroreductase pathway in the physiology of H. influenzae and Neisseria species is unknown. Further understanding of the H. influenzae chloramphenicol reduction pathway will contribute to our knowledge of the diversity of prokaryotic nitroreductase mechanisms.  (+info)

TRAIL limits excessive host immune responses in bacterial meningitis. (79/381)

Apart from potential roles in anti-tumor surveillance, the TNF-related apoptosis-inducing ligand (TRAIL) has important regulatory functions in the host immune response. We studied antiinflammatory effects of endogenous and recombinant TRAIL (rTRAIL) in experimental meningitis. Following intrathecal application of pneumococcal cell wall, a TLR2 ligand, we found prolonged inflammation, augmented clinical impairment, and increased apoptosis in the hippocampus of TRAIL(-/-) mice. Administration of rTRAIL into the subarachnoid space of TRAIL(-/-) mice or reconstitution of hematopoiesis with wild-type bone marrow cells reversed these effects, suggesting an autoregulatory role of TRAIL within the infiltrating leukocyte population. Importantly, intrathecal application of rTRAIL in wild-type mice with meningitis also decreased inflammation and apoptosis. Moreover, patients suffering from bacterial meningitis showed increased intrathecal synthesis of TRAIL. Our findings provide what we believe is the first evidence that TRAIL may act as a negative regulator of acute CNS inflammation. The ability of TRAIL to modify inflammatory responses and to reduce neuronal cell death in meningitis suggests that it may be used as a novel antiinflammatory agent in invasive infections.  (+info)

Microbiological evaluation of the new VITEK 2 Neisseria-Haemophilus identification card. (80/381)

VITEK 2 is an automated identification system for diverse bacterial and fungal species. A new card (the Neisseria-Haemophilus [NH] card) for the identification of Neisseria spp., Haemophilus spp., and other fastidious gram-negative or gram-variable microorganisms has been developed, but its performance in a routine clinical laboratory has not yet been evaluated. In this study, a total of 188 bacterial strains belonging to the genera Actinobacillus, Campylobacter, Capnocytophaga, Cardiobacterium, Eikenella, Gardnerella, Haemophilus, Kingella, Moraxella, and Neisseria were investigated. The NH card was able to identify 171 strains (91%) correctly without the need for extra tests; one strain (0.5%) was misidentified, and five strains (2.7%) could not be classified. Eleven strains (5.8%) were identified with a low level of discrimination, and simple additional tests were required to increase the correct-identification rate to 96.8%. The results were available within 6 h. Based on these results, the new VITEK 2 NH card appears to be a good method for the identification of diverse groups of fastidious organisms, which would otherwise require testing with multiple systems. However, more work is needed to evaluate the performance of VITEK 2 with regard to Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella bacteria because of the insufficient number of strains tested in this study. Moreover, further reduction of the detection time would be desirable.  (+info)