Dihydrofolate reductase from Neisseria sp. (17/381)

Members of the genus Neisseria are relatively nonsusceptible to trimethoprim, an inhibitor of dihydrofolate reductase. For example, the minimal inhibitory concentration (MIC) of trimethoprim for N. gonorrhoeae ranges from 2 to 70 mug/ml, whereas the MIC for Escherichia coli is 0.2 mug/ml or less. In an effort to understand this difference, dihydrofolate reductase was partially purified from five Neisseria species and compared with the enzyme from E. coli. N. gonorrhoeae dihydrofolate reductase was similar to that from E. coli in molecular weight (18,000) and affinity for the substrates reduced nicotinamide adenine dinucleotide phosphate and dihydrofolate (K(m) = 13 and 8 muM, respectively). However, the gonococcal enzyme had a decreased affinity for trimethoprim, with an apparent K(i) of 45 x 10(-9) M, some 30-fold greater than the E. coli value of 1.2 x 10(-9) M. These enzymes also differed in their isoelectric points and pH activity profiles. Within the genus Neisseria, the dihydrofolate reductase isolated from N. meningitidis and N. lactamica resembled the N. gonorrhoeae enzyme, and only small differences were detected for the N. flavescens and Branhamella catarrhalis dihydrofolate reductases. These data indicate that the relatively poor affinity of trimethoprim for the dihydrofolate reductase from these organisms may be largely responsible for the relative nonsusceptibility of Neisseria sp. to trimethoprim. The contribution of other resistance mechanisms to the overall nonsusceptibility was assessed. Strains of N. gonorrhoeae with altered cell envelope permeability had MIC values less than twofold different from those of isogenic wild-type strains. Also, a direct relationship was observed between the affinity of trimethoprim analogs for gonococcal dihydrofolate reductase and the MIC of these compounds for the gonococcus. These observations suggest that the cell envelope of N. gonorrhoeae is not impermeable to trimethoprim. Changes in the amount of dihydrofolate reductase activity could cause alterations in the susceptibility of the gonococcus to trimethoprim, as demonstrated with N. gonorrhoeae strains selected for trimethoprim resistance after chemical mutagenesis. However, the level of dihydrofolate reductase activity in wild-type N. gonorrhoeae was similar to that of E. coli, indicating that the difference in the susceptibility of these organisms is not due to greater amounts of enzyme in N. gonorrhoeae.  (+info)

Structural and immunochemical characterization of the lipooligosaccharides expressed by Neisseria subflava 44. (18/381)

Neisserial lipooligosaccharides (LOSs) are a family of complex cell surface glycolipids. We used mass spectrometry techniques (electrospray ionization, collision-induced dissociation, and multiple step), combined with fluorophore-assisted carbohydrate electrophoresis monosaccharide composition analysis, to determine the structure of the two low-molecular-mass LOS molecules (LOSI and LOSII) expressed by Neisseria subflava 44. We determined that LOSI contains one glucose on both the alpha and beta chains. LOSII is structurally related to LOSI and differs from it by the addition of a hexose (either glucose or galactose) on the alpha chain. LOSI and LOSII were able to bind monoclonal antibody (MAb) 25-1-LC1 when analyzed by Western blotting experiments. We used a set of genetically defined Neisseria gonorrhoeae mutants that expressed single defined LOS epitopes and a group of Neisseria meningitidis strains that expresses chemically defined LOS components to determine the structures recognized by MAb 25-1-LC1. We found that extensions onto the beta-chain glucose of LOSI block the recognition by this MAb, as does further elongation from the LOSII alpha chain. The LOSI structure was determined to be the minimum structure that is recognized by MAb 25-1-LC1.  (+info)

Neisserial TonB-dependent outer-membrane proteins: detection, regulation and distribution of three putative candidates identified from the genome sequences. (19/381)

Computer searches were carried out of the gonococcal and meningococcal genome databases for previously unknown members of the TonB-dependent family (Tdf) of outer-membrane receptor proteins. Seven putative non-contiguous genes were found and three of these (identified in gonococcal strain FA1090) were chosen for further study. Consensus motif analysis of the peptide sequences was consistent with the three genes encoding TonB-dependent receptors. In view of the five previously characterized TonB-dependent proteins of pathogenic neisseriae, the putative genes were labelled tdfF, tdfG and tdfH. TdfF had homology with the siderophore receptors FpvA of Pseudomonas aeruginosa and FhuE of Escherichia coli, whereas TdfG and TdfH had homology with the haemophore receptor HasR of Serratia marcescens. The aim of this project was to characterize these proteins and determine their expression, regulation, distribution and surface exposure. Strain surveys of iron-stressed commensal and pathogenic neisseriae revealed that TdfF is unlikely to be expressed, TdfG is expressed by gonococci only and that TdfH is expressed by both meningococci and gonococci. Expression of TdfH was unaffected by iron availability. Susceptibility of TdfH to cleavage by proteases in live gonococci was consistent with surface exposure of this protein. TdfH may function as a TonB-dependent receptor for a non-iron nutrient source. Furthermore, TdfH is worthy of future investigation as a potential meningococcal vaccine candidate as it is a highly conserved, widely distributed and surface-exposed outer-membrane protein.  (+info)

Genetic diversity of Neisseria lactamica strains from epidemiologically defined carriers. (20/381)

We assessed the genetic diversity of 26 Neisseria lactamica strains from epidemiologically related sources, i.e., groups of kindergartens and primary schools in three Bavarian towns, by the partial sequencing of the argF, rho, recA, and 16S ribosomal genes. We found a total of 17 genotypes, of which 12 were found only in one strain. The genotypes comprised 5 alleles of the argF gene, 9 of rho, 8 of recA, and 10 of the 16S ribosomal DNA. Sequence analysis by determination of homoplasy ratios and split decomposition analysis revealed abundant recombination within N. lactamica.  (+info)

Chromosomal DNA from a variety of bacterial species is present in synovial tissue from patients with various forms of arthritis. (21/381)

OBJECTIVE: We and others have reported the presence of Chlamydia and other bacterial species in joint specimens from patients with reactive arthritis (ReA). The present study was conducted to investigate whether bacteria other than those specified by diagnostic criteria for ReA could be identified in synovial fluid (SF) or tissue from patients with various arthritides, and whether the presence of such organisms corresponds to particular clinical characteristics in any patient set or subset. METHODS: DNA in synovial biopsy samples and SF obtained from 237 patients with various arthritides, including ReA, rheumatoid arthritis, and undifferentiated oligoarthritis, was assayed by polymerase chain reaction (PCR) using "panbacterial" primers; we chose only samples known to be PCR negative for Chlamydia, Borrelia, and Mycoplasma species. PCR products were cloned, and cloned amplicons from each sample were sequenced; DNA sequences were compared against all others in GenBank for identification of bacterial species involved. RESULTS: Ten percent of patient samples were PCR positive in panbacterial screening assays. Bacterial species identified belonged to the genera Neisseria, Acinetobacter, Moraxella, Salmonella, Pseudomonas, and others. Thirty-five percent of PCR-positive patients showed the presence of DNA from more than a single bacterial species in synovium; overall, however, we could identify no clear relationship between specific single or multiple bacterial species in the synovium and any general clinical characteristics of any individual or group of patients. CONCLUSION: This analysis provides the first systematic attempt to relate bacterial nucleic acids in the synovium to clinical characteristics, joint findings, and outcomes. Many patients with arthritis have bacterial DNA in the joint, and, in some cases, DNA from more than a single species is present. However, except for 1 case of a control patient with staphylococcal septic arthritis, it is not clear from the present study whether the synovial presence of such organisms is related to disease pathogenesis or evolution in any or all cases.  (+info)

Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. (22/381)

Previously, a complete genome analysis of Neisseria meningitidis strain MC58 revealed the largest repertoire of putative phase-variable genes described in any species to date. Initial comparisons with two incomplete Neisseria spp. genome sequences available at that time revealed differences in the repeats associated with these genes in the form of polymorphisms, the absence of the potentially unstable elements in some alleles, and in the repertoire of the genes that were present. Analyses of the complete genomes of N. meningitidis strain Z2491 and Neisseria gonorrhoeae strain FA1090 have been performed and are combined with a comprehensive comparative analysis between the three available complete genome sequences. This has increased the sensitivity of these searches and provided additional contextual information that facilitates the interpretation of the functional consequences of repeat instability. This analysis identified: (i) 68 phase-variable gene candidates in N. meningitidis strain Z2491, rather than the 27 previously reported; (ii) 83 candidates in N. gonorrhoeae strain FA1090; and (iii) 82 candidates in N. meningitidis strain MC58, including an additional 19 identified through cross-comparisons with the other two strains. In addition to the 18 members of the opa gene family, a repertoire of 119 putative phase-variable genes is described, indicating a huge potential for diversification mediated by this mechanism of gene switching in these species that is central to their interactions with the host and environmental transitions. Eighty-two of these are either known (14) or strong (68) candidates for phase variation, which together with the opa genes make a total of 100 identified genes. The repertoires of the genes identified in this analysis diverge from the different species groupings, indicating horizontal exchange that significantly affects the species and strain complements of these genes.  (+info)

Enhancing the specificity of the COBAS AMPLICOR CT/NG test for Neisseria gonorrhoeae by retesting specimens with equivocal results. (23/381)

The COBAS AMPLICOR CT/NG test for Neisseria gonorrhoeae cross-reacts with certain strains of nonpathogenic Neisseria species. In some strains, the target sequence is identical to that of N. gonorrhoeae, whereas other strains have a small number of mismatches within the regions recognized by the primers or probe used in the COBAS AMPLICOR NG test. These cross-reactive strains are occasionally present in urogenital specimens, causing false-positive results in the COBAS AMPLICOR NG test. Analysis of the data generated in a large multicenter clinical trial showed that 2.9% of the specimens gave signals between A(660)s of 0.2 and 3.5 but that one-half of these equivocal specimens did not contain N. gonorrhoeae. Most of these equivocal specimens were correctly classified as true positive or true negative by retesting in duplicate and defining a PCR-positive result as two of three results with an A(660) of > or =2.0. If specimens had been classified as positive or negative based on a single test result using a cutoff of an A(660) of 0.2, specificity would have ranged from 96.2 to 98.9% depending on specimen type, sex, and presence of symptoms. By employing the equivocal zone-retesting algorithm, specificity increased to 98.6 to 99.9% with little effect (0.1 to 4.9% decrease) on sensitivity in most specimen types, enabling the test to achieve a positive predictive value of at least 90% in populations with a prevalence of 4% or higher. In lower-prevalence populations, the test could be used to screen for presumptive infections that would have to be confirmed by an independent test.  (+info)

Cellular elongation under the influence of antibacterial agents: way to differentiate coccobacilli from cocci. (24/381)

Representatives of Moraxella, Acinetobacter, and various other groups of short, gram-negative bacilli are readily distinguished from Neisseria by microscopic observation of filaments produced by the rods during growth in the presence of low concentrations of penicillins or sulfadiazine. Wet mounts of bacteria from routine antibiotic susceptibility test cultures are satisfactory for examination of morphology.  (+info)