The surface properties of Neisseria gonorrhoeae: topographical distribution of the outer membrane protein antigens. (25/2711)

Gonococci were labelled with 125I using the lactoperoxidase system. The amount of label incorporated was similar with all strains including those which appeared capsulated. Electrophoresis on sodium dodecyl sulphate-polyacrylamide gels revealed that the major proteins labelled were those found in outer membrane preparations. Comparison of variants of one strain showed that the major outer membrane protein (protein I) was always present and heavily labelled. The second major protein (protein II) was present in variable amounts but labelling was proportional to the amount present. A third protein (III) was only present in outer membranes from a freshly isolated variant but was present in whole cells of each strain. Protein III was not labelled in whole cells but was labelled in outer membrane preparations suggesting that many membranes have their inner surface exposed. The labelling of a strain adapted to growth in guinea-pig chambers failed to reveal any new major surface proteins. The results demonstrate the variation in surface topography possible with variants of one strain of gonococcus but show that one major protein antigen is always expressed on the surface.  (+info)

Antigenic and molecular conservation of the gonococcal NspA protein. (26/2711)

A low-molecular-weight protein named NspA (neisserial surface protein A) was recently identified in the outer membrane of all Neisseria meningitidis strains tested. Antibodies directed against this protein were shown to protect mice against an experimental meningococcal infection. Hybridization experiments clearly demonstrated that the nspA gene was also present in the genomes of the 15 Neisseria gonorrhoeae strains tested. Cloning and sequencing of the nspA gene of N. gonorrhoeae B2 revealed an open reading frame of 525 nucleotides coding for a polypeptide of 174 amino acid residues, with a calculated molecular weight of 18,316 and a pI of 10.21. Comparison of the predicted amino acid sequence of the NspA polypeptides from the gonococcal strains B2 and FA1090, together with that of the meningococcal strain 608B, revealed an identity of 93%, suggesting that the NspA protein is highly conserved among pathogenic Neisseria strains. The level of identity rose to 98% when only the two gonococcal predicted NspA polypeptides were compared. To evaluate the level of antigenic conservation of the gonococcal NspA protein, monoclonal antibodies (MAbs) were generated. Four of the seven NspA-specific MAbs described in this report recognized their corresponding epitope in 100% of the 51 N. gonorrhoeae strains tested. Radioimmunobinding assays clearly indicated that the gonococcal NspA protein is exposed at the surface of intact cells.  (+info)

A Neisseria gonorrhoeae immunoglobulin A1 protease mutant is infectious in the human challenge model of urethral infection. (27/2711)

Many mucosal pathogens, including Neisseria gonorrhoeae, produce proteases that cleave immunoglobulin A (IgA), the predominant immunoglobulin class produced at mucosal surfaces. While considerable circumstantial evidence suggests that IgA1 protease contributes to gonococcal virulence, there is no direct evidence that N. gonorrhoeae requires IgA1 protease activity to infect a human host. We constructed a N. gonorrhoeae iga mutant without introducing new antibiotic resistance markers into the final mutant strain and used human experimental infection to test the ability of the mutant to colonize the male urethra and to cause gonococcal urethritis. Four of the five male volunteers inoculated with the Iga- mutant became infected. In every respect-clinical signs and symptoms, incubation period between inoculation and infection, and the proportion of volunteers infected-the outcome of human experimental infection with FA1090iga was indistinguishable from that previously reported for a variant of parent strain FA1090 matching the mutant in expression of Opa proteins, lipooligosaccharide, and pilin. These results indicate that N. gonorrhoeae does not require IgA1 protease production to cause experimental urethritis in males.  (+info)

FbpC is not essential for iron acquisition in Neisseria gonorrhoeae. (28/2711)

The fbpABC locus of Neisseria gonorrhoeae has been proposed to encode a periplasmic protein-dependent iron transport system. Although the function of the gonococcal FbpA protein has been well characterized and its role as a periplasmic binding protein is well defined, little is known about the function of the FbpB and FbpC proteins. To define the function of the gonococcal FbpC protein, an N. gonorrhoeae F62 fbpC mutant was constructed by insertional inactivation with the kanamycin gene. The N. gonorrhoeae F62 fbpC mutant was observed to grow with heme, transferrin, or ferric nitrate as the sole exogenous iron source, indicating that the gonococcal FbpC protein is not absolutely required for growth with these iron sources. In previous studies we were unable to detect fbpB- or fbpC-specific transcripts by Northern analysis. Reverse transcription-PCR analysis with RNA obtained from N. gonorrhoeae F62 grown under iron-replete and -depleted conditions detected fbpA and fbpAB transcripts but failed to detect fbpC or fbpBC transcripts. These results indicate that FbpC does not play a pivotal role in iron transport in N. gonorrhoeae and suggest that additional ABC transport systems are functional in the gonococcus for the acquisition of iron.  (+info)

Erythromycin-resistant Neisseria gonorrhoeae and oral commensal Neisseria spp. carry known rRNA methylase genes. (29/2711)

Two Neisseria gonorrhoeae isolates from Seattle and two isolates from Uruguay were resistant to erythromycin (MIC, 4 to 16 microg/ml) and had reduced susceptibility to azithromycin (MIC, 1 to 4 microg/ml) due to the presence of the self-mobile rRNA methylase gene(s) ermF or ermB and ermF. The two Seattle isolates and one isolate from Uruguay were multiresistant, carrying either the 25.2-MDa tetM-containing plasmid (Seattle) or a beta-lactamase plasmid (Uruguay). Sixteen commensal Neisseria isolates (10 Neisseria perflava-N. sicca, 2 N. flava, and 4 N. mucosa) for which erythromycin MICs were 4 to 16 microg/ml were shown to carry one or more known rRNA methylase genes, including ermB, ermC, and/or ermF. Many of these isolates also were multiresistant and carried the tetM gene. This is the first time that a complete transposon or a complete conjugative transposon carrying an antibiotic resistance gene has been described for the genus Neisseria.  (+info)

Effects of thiamphenicol and chloramphenicol in inhibiting Neisseria gonorrhoeae isolates. (30/2711)

Thiamphenicol was compared with penicillin, tetracycline, and chloramphenicol for its ability to inhibit 530 isolates of Neisseria gonorrhoeae, including 13 penicillinase-producing isolates. Thiamphenicol proved to be as active as chloramphenicol in inhibiting all of the isolates.  (+info)

Inhibition of beta-lactamase in Neisseria gonorrhoeae by sodium clavulanate. (31/2711)

Sodium clavulanate at subinhibitory concentrations affected the activity of penicillin G, ampicillin, or amoxicillin on beta-lactamase-positive strains of Neisseria gonorrhoeae as demonstrated by marked reduction in the minimal inhibitory concentrations of the drugs for the organisms. The compound did not affect the activity of these penicillins on beta-lactamase-negative strains of N. gonorrhoeae. It also had no effect on the activity of cefoxitin against either beta-lactamase-negative or -positive strains. The reduction in minimal inhibitory concentrations of the penicillins for the beta-lactamase-positive organisms brought about by sodium clavulanate is probably due to inhibition of the beta-lactamase by the compound.  (+info)

Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. (32/2711)

BACKGROUND: Amplified DNA probes provide powerful tools for the detection of infectious diseases, cancer, and genetic diseases. Commercially available amplification systems suffer from low throughput and require decontamination schemes, significant hands-on time, and specially trained laboratory staff. Our objective was to develop a DNA probe system to overcome these limitations. METHODS: We developed a DNA probe system, the BDProbeTecTMET, based on simultaneous strand displacement amplification and real-time fluorescence detection. The system uses sealed microwells to minimize the release of amplicons to the environment. To avoid the need for specially trained labor, the system uses a simple workflow with predispensed reagent devices; a programmable, expandable-spacing pipettor; and the 96-microwell format. Amplification and detection time was 1 h, with potential throughput up to 564 patient results per shift. We tested 122 total patient specimens obtained from a family practice clinic with the BD ProbeTecET and the Abbott LCx(R) amplified system for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae. RESULTS: Based on reportable results, the BDProbeTecET results for both organisms were 100% sensitive and 100% specific relative to the LCx. CONCLUSIONS: The BDProbeTecET is an easy-to-use, high-throughput, closed amplification system for the detection of nucleic acid from C. trachomatis and N. gonorrhoeae and other organisms.  (+info)