Phorbol ester promotes endocytosis by activating a factor involved in endosome fusion. (57/2851)

Previous studies indicate that a zinc- and phorbol ester-binding factor is necessary for in vitro endosome fusion and for the effect of Rab5 on endosome fusion. Rab5 is a small GTPase that regulates membrane fusion between early endosomes derived from either receptor-mediated endocytosis or fluid-phase endocytosis. In its GTP-bound form, Rab5 promotes endocytosis and enhances fusion among early endosomes. To determine if PMA stimulates endocytosis by activating a factor required for endosome fusion, we overexpressed wild-type Rab5, a dominant negative mutant (Rab5:S34N), and a GTPase deficient mutant (Rab5:Q79L) in BHK-21 cells. The phorbol ester PMA stimulates endocytosis and increases the number and the size of endocytic vesicles, even in the presence of Rab5:S34N. Zinc depletion with N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and addition of calphostin C (CPC), an inhibitor of PKC that interacts with zinc and phorbol ester binding motifs, inhibited both basal and Rab5-stimulated fluid phase endocytosis. These two reagents also inhibited the size and number of endocytic vesicles promoted by Rab5. These results suggest that PMA stimulates endocytosis by regulating the dynamics of the early endosome compartment.  (+info)

Cannabinoid WIN 55,212-2 inhibits the activity-dependent facilitation of spinal nociceptive responses. (58/2851)

Cannabinoids suppress nociceptive processing of acute stimuli, but little is known about their effects on processes that lead to hyperexcitability of nociceptive neurons following prolonged noxious stimulation. Wind-up, the increasingly strong response of spinal nociceptive neurons to repetitive noxious electrical stimuli, results from a fast-rising cumulative depolarization and increase in intracellular calcium concentration. These processes produce central sensitization, the increased excitability of spinal nociceptive neurons that contributes to the hyperalgesia and allodynia associated with chronic pain. Intravenous injection of the potent, synthetic cannabinoid agonist WIN 55, 212-2, but not the inactive enantiomer, WIN 55,212-3, dose-dependently decreased the wind-up of spinal wide dynamic range and nociceptive-specific neurons independent of acute responses to activation of low- and high-threshold primary afferents. This is the first direct evidence that cannabinoids inhibit the activity-dependent facilitation of spinal nociceptive responses.  (+info)

NPY receptor subtype in the rabbit isolated ileum. (59/2851)

1. The purpose of this work was to verify the hypothesis that the rabbit ileum is a selective preparation for the NPY Y5 receptor by using new selective antagonists recently synthesized. Spontaneous contractions of the rabbit isolated ileum were recorded and binding experiments were performed in cells expressing the human NPY Y1, Y2, Y4 or Y5 receptor subtype. 2. NPY analogues produced a concentration-dependent transient inhibition of the spontaneous contractions of the rabbit ileum with the following order of potency hPP > rPP > PYY > or = [Leu31,-Pro34]-NPY > NPY >> NPY13-36. Pre-exposure to rPP, PYY, [Leu31,Pro34]-NPY or NPY (but not NPY13-36) inhibited the effect of subsequent administration of hPP suggesting cross-desensitization of the preparation. The apparent affinity of the various agonists studied was correlated to the affinity reported for the human Y4 receptor subtype (and to a lesser extent for the rat Y4 subtype) but not to the affinity for the Y5 receptor subtype. 3. BIBO 3304, a selective NPY Y1 receptor antagonist, and CGP 71683A, a selective NPY Y5 receptor antagonist, did not affect the response to hPP. JCF 109, another NPY Y5 receptor antagonist, produced an inhibition of the response to hPP but only at the highest dose tested (10 microM) which also, by itself, produced intrinsic inhibitory effects. 4. 1229U91, a non-selective ligand for Y1, Y2, Y4 and Y5 receptors with high affinity toward the Y1 and Y4 receptor subtypes, produced a concentration-dependent transient inhibition of the spontaneous contractions of the rabbit ileum and a dose-dependent inhibition of the response to hPP (apparent pKB: 7.2). 5. These results suggest that in the rabbit ileum, the NPY receptor involved in the inhibition of the spontaneous contractile activity is a NPY Y4 receptor subtype.  (+info)

Effects of protein kinase inhibitors on the accumulation kinetics of p53 protein in normal human embryo cells following X-irradiation. (60/2851)

DNA-damaging agents induce phosphorylation of the p53 protein, resulting in its accumulation in the nucleus. To clarify the signal transduction pathway(s) involved in p53 protein accumulation in normal human embryo cells following X-irradiation, the effects of three protein kinase inhibitors were examined. Quercetin, an inhibitor of heat-shock response, dose dependently suppressed the p53 accumulation induced by X-rays at more than 100 microM. No suppression, however, was observed with calphostin-C, a specific inhibitor of protein kinase C, in the range of 0.05 to 0.25 microM. Wortmannin was the most potent inhibitor of p53 accumulation. Its suppressive effect appears within a few minutes of pretreatment with a dose of 25 microM, but posttreatment was less effective. Our findings suggest that PKC is not involved in X-ray-induced p53 accumulation in normal human embryo cells and that a wortmannin-sensitive pathway acts as a sensor of DNA damage.  (+info)

Overexpression of retinoic acid receptor beta in head and neck squamous cell carcinoma cells increases their sensitivity to retinoid-induced suppression of squamous differentiation by retinoids. (61/2851)

Nuclear retinoic acid receptor beta(RARbeta) expression is suppressed in many head and neck squamous cell carcinomas (HNSCCs), and an inverse relationship was found between squamous differentiation and RARbeta expression in such cells. To investigate the role of RARbeta in HNSCC growth and differentiation, we transfected a retroviral RARbeta2 expression vector (LNSbeta) into HNSCC SqCC/Y1 cells, which do not express endogenous RARbeta but do express RARalpha, RARgamma, and retinoid X receptors. Transfected clones expressing RARbeta2 mRNA and protein exhibited enhanced sensitivity to the suppressive effects of all-trans-retinoic acid (ATRA) on squamous differentiation compared with cells transfected with the LNSX vector only; transglutaminase type I level was suppressed after a 3-day treatment with 10(-10) M ATRA in four of five LNSbeta clones, whereas it was not suppressed in LNSX cells even by 10(-6) M ATRA. Similarly, cytokeratin 1 mRNA level was more suppressed in ATRA-treated LNSbeta clones than it was in LNSX cells. This effect was independent of transrepression of activator protein-1. None of the LNSbeta-transfected clones showed an increased growth inhibition by ATRA, 9-cis-retinoic acid, or the synthetic retinoid 6-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-2-naphthale necarboxylic acid. These findings suggest that, in SqCC/Y1 cells, RARbeta mediates suppression of squamous differentiation by ATRA without enhancing its growth-inhibitory effects.  (+info)

Possible involvement of atypical protein kinase C (PKC) in glucose-sensitive expression of the human insulin gene: DNA-binding activity and transcriptional activity of pancreatic and duodenal homeobox gene-1 (PDX-1) are enhanced via calphostin C-sensitive but phorbol 12-myristate 13-acetate (PMA) and Go 6976-insensitive pathway. (62/2851)

Pancreatic and duodenal homeobox gene-1 (PDX-1) is a transcription factor which regulates the insulin gene expression. In this study, we tried to elucidate the role of PDX-1 in the glucose-induced transcriptional activation of the human insulin gene promoter in MIN6 cells. Electrophoretic mobility shift assay (EMSA) and chloramphenicol acetyltransferase (CAT) assay demonstrated that both DNA-binding activity and transcriptional activity of PDX-1 were increased with 20 mmol/l glucose more than with 2 mmol/l glucose. The DNA-binding activity of PDX-1 induced by high glucose was blocked by phosphatase treatment, suggesting the involvement of PDX-1 phosphorylation in this event. In an in vitro phosphorylation study, PDX-1 was phosphorylated by protein kinase C (PKC), but not by cAMP dependent protein kinase (PKA) or mitogen-activated protein kinase (MAPK). Furthermore, increased PDX-1 function induced by high glucose was blocked by calphostin C, an inhibitor of all PKC isoforms, but unaffected by phorbol 12-myristate 13-acetate (PMA), an activator of classical and novel PKC, or Go 6976, an inhibitor of classical and novel PKC, which suggested that the PKC family which activated PDX-1 in MIN6 cells was atypical PKC. Western blot and immunocytochemical studies with anti-PKC zeta antibody confirmed the presence of PKC zeta, one of the isoforms of atypical PKC, in MIN6 cells. Furthermore, PKC zeta activity was significantly increased by glucose stimulation. These results suggest that high glucose increased DNA-binding activity of PDX-1 by activating atypical PKC including PKC zeta, resulting in transcriptional activation of the human insulin gene promoter.  (+info)

The role of protein kinase C isozymes in bombesin-stimulated gastrin release from human antral gastrin cells. (63/2851)

Two of the most effective stimuli of gastrin release from human antral G cells are bombesin and phorbol esters. Both agonists result in activation of the protein kinase C family of isozymes, however, the exact contribution of protein kinase C to the resultant release of gastrin has been difficult to assess, possibly due to the presence of multiple protein kinase C isozymes in the G cells. The results of the present study demonstrated that the human antral G cells expressed 6 protein kinase C isozymes alpha, gamma, theta, epsilon, zeta, and mu. Of these protein kinase C, gamma and theta were translocated by stimulation of the cells by either 10 nM bombesin or 1 nM phorbol ester. Inhibition of protein kinase Cmu (localized to the Golgi complex) did not decrease bombesin-stimulated gastrin release indicating that this isozyme was not involved in the secretory process. The use of selective antagonists of the calcium-sensitive conventional protein kinase C subgroup resulted in an increase in bombesin-stimulated gastrin release and indicated that protein kinase Cgamma was involved in the desensitization of the bombesin response.  (+info)

Increased levels of proneurotensin/neuromedin N mRNA in rat striatum and nucleus accumbens induced by 7-OH-DPAT and nafadotride. (64/2851)

The D3 dopamine receptor has been proposed as a potential antipsychotic site. In this study, the effects of the D3-preferring compounds 7-OH-DPAT and nafadotride on levels of proneurotensin/neuromedin N (proNT/N) were assessed. Adult, male, Sprague-Dawley rats were injected subcutaneously (s.c.) with the agonist 7-OH-DPAT (0.1 mg/kg) or antagonist nafadotride (1 mg/kg) at doses previously shown to produce negligible occupancy of D2 receptors in vivo. As a positive control, an additional group of animals was treated with haloperidol (3 mg/kg, s.c.). ProNT/N mRNA levels were determined by in situ hybridization. 7-OH-DPAT increased proNT/N mRNA in the nucleus accumbens shell. Nafadotride increased proNT/N mRNA levels in the nucleus accumbens shell and dorsomedial caudate nucleus to levels comparable to those produced by haloperidol. Nafadotride also increased proNT/N mRNA in the anterior and dorsal caudate but to a lesser extent than haloperidol. These data indicate that 7-OH-DPAT and nafadotride increase proNT/N mRNA levels in brain areas affected by antipsychotic drugs and suggest that the D3 receptor may regulate proNT/N mRNA expression in the nucleus accumbens shell.  (+info)