Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. (33/726)

Carbon nanotubes (CNT) are intensively being developed for biomedical applications including drug and gene delivery. Although all possible clinical applications will require compatibility of CNT with the biological milieu, their in vivo capabilities and limitations have not yet been explored. In this work, water-soluble, single-walled CNT (SWNT) have been functionalized with the chelating molecule diethylentriaminepentaacetic (DTPA) and labeled with indium ((111)In) for imaging purposes. Intravenous (i.v.) administration of these functionalized SWNT (f-SWNT) followed by radioactivity tracing using gamma scintigraphy indicated that f-SWNT are not retained in any of the reticuloendothelial system organs (liver or spleen) and are rapidly cleared from systemic blood circulation through the renal excretion route. The observed rapid blood clearance and half-life (3 h) of f-SWNT has major implications for all potential clinical uses of CNT. Moreover, urine excretion studies using both f-SWNT and functionalized multiwalled CNT followed by electron microscopy analysis of urine samples revealed that both types of nanotubes were excreted as intact nanotubes. This work describes the pharmacokinetic parameters of i.v. administered functionalized CNT relevant for various therapeutic and diagnostic applications.  (+info)

Fuel-powered artificial muscles. (34/726)

Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energy. The first type stores electrical charge and uses changes in stored charge for mechanical actuation. In contrast with electrically powered electrochemical muscles, only half of the actuator cycle is electrochemical. The second type of fuel-powered muscle provides a demonstrated actuator stroke and power density comparable to those of natural skeletal muscle and generated stresses that are over a hundred times higher.  (+info)

The role of molecular modeling in bionanotechnology. (35/726)

Molecular modeling is advocated here as a key methodology for research and development in bionanotechnology. Molecular modeling provides nanoscale images at atomic and even electronic resolution, predicts the nanoscale interaction of unfamiliar combinations of biological and inorganic materials, and evaluates strategies for redesigning biopolymers for nanotechnological uses. The methodology is illustrated in this paper through reviewing three case studies. The first one involves the use of single-walled carbon nanotubes as biomedical sensors where a computationally efficient, yet accurate, description of the influence of biomolecules on nanotube electronic properties through nanotube-biomolecule interactions was developed; this development furnishes the ability to test nanotube electronic properties in realistic biological environments. The second case study involves the use of nanopores manufactured into electronic nanodevices based on silicon compounds for single molecule electrical recording, in particular, for DNA sequencing. Here, modeling combining classical molecular dynamics, material science and device physics, described the interaction of biopolymers, e.g., DNA, with silicon nitrate and silicon oxide pores, furnished accurate dynamic images of pore translocation processes, and predicted signals. The third case study involves the development of nanoscale lipid bilayers for the study of embedded membrane proteins and cholesterol. Molecular modeling tested scaffold proteins, redesigned apolipoproteins found in mammalian plasma that hold the discoidal membranes in the proper shape, and predicted the assembly as well as final structure of the nanodiscs. In entirely new technological areas such as bionanotechnology, qualitative concepts, pictures and suggestions are sorely needed; these three case studies document that molecular modeling can serve a critical role in this respect, even though it may still fall short on quantitative precision.  (+info)

Blood compatible carbon nanotubes--nano-based neoproteoglycans. (36/726)

Although nanotechnology has provided a rich variety of nanomaterials (1-100 nm) for in vivo medical applications, the blood compatibility of all these nanobiomaterials is still largely unexamined. Here, we report the preparation of blood-compatible carbon nanotubes (CNTs) that potentially represent the building blocks for nanodevices having in vivo applications. Activated partial thromboplastin time (APTT) and thromboelastography (TEG) studies prove that heparinization can significantly enhance the blood compatibility of nanomaterials.  (+info)

Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. (37/726)

Nanotechnology and nanomaterials have become the new frontier world-wide over the past few years and prospects for the production and novel uses of large quantities of carbon nanotubes in particular are becoming an increasing reality. Correspondingly, the potential health risks for these and other nanoparticulate materials have been of considerable concern. Toxicological studies, while sparse, have been concerned with virtually uncharacterized, single wall carbon nanotubes, and the conclusions have been conflicting and uncertain. In this research we performed viability assays on a murine lung macrophage cell line to assess the comparative cytotoxicity of commercial, single wall carbon nanotubes (ropes) and two different multiwall carbon nanotube samples; utilizing chrysotile asbestos nanotubes and black carbon nanoaggregates as toxicity standards. These nanotube materials were completely characterized by transmission electron microscopy and observed to be aggregates ranging from 1 to 2 microm in mean diameter, with closed ends. The cytotoxicity data indicated a strong concentration relationship and toxicity for all the carbon nanotube materials relative to the asbestos nanotubes and black carbon. A commercial multiwall carbon nanotube aggregate exhibiting this significant cell response was observed to be identical in structure to multiwall carbon nanotube aggregates demonstrated to be ubiquitous in the environment, and especially in indoor environments, where natural gas or propane cooking stoves exist. Correspondingly, preliminary epidemiological data, although sparse, indicate a correlation between asthma incidence or classification, and exposure to gas stoves. These results suggest a number of novel epidemiological and etiological avenues for asthma triggers and related respiratory or other environmental health effects, especially since indoor number concentrations for multiwall carbon nanotube aggregates is at least 10 times the outdoor concentration, and virtually all gas combustion processes are variously effective sources. These results also raise concerns for manufactured carbon nanotube aggregates, and related fullerene nanoparticles.  (+info)

Carbon nanotubes (2,5-dihydroxybenzoyl hydrazine) derivative as pH adjustable enriching reagent and matrix for MALDI analysis of trace peptides. (38/726)

A functionalized carbon nanotube (CNT), CNT 2,5-dihydroxybenzoyl hydrazine derivative, was synthesized and used as both pH adjustable enriching reagent and matrix in matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of trace peptides. The derivative reagent, 2,5-dihydroxybenzoyl hydrazine, introduced phenolic hydroxyl and phenyl groups to the surface of the CNT. The former group can provide adjustable surface charge and a source of protons for chemical ionization, and the latter helps to keep strong ultraviolet absorption for enhancing pulsed laser desorption and ionization. It was found that the functionalized CNT was less twisted in a basic condition (pH 10.5), which afforded an increased surface area to volume ratio for adsorption towards trace peptides. However, functionalized CNT becomes deposited in an acidic condition (pH 5) and can be isolated readily from the sample solutions once the nanoparticles have trapped the target analytes, thus providing a novel and convenient alternative method for quick isolation. Compared with the previously reported method on enriching analytes using the pristine CNT, it is observed that the detection limit for analytes can be greatly improved due to enhancing adsorption capacity of the functionalized CNT. Moreover, peptide mixture at concentration as low as 0.01 pg/microL still can be detected after enrichment mediated by the functionalized CNT, while it is difficult to be detected without enrichment at concentration 0.1 pg/microL using alpha-cyano-4-hydroxycinnamic acid (CHCA) as matrix. Therefore, high efficiency of adsorption and enrichment towards trace peptides can be achieved by adjusting pH value of the functionalized CNT dispersion.  (+info)

Low-potential nicotinamide adenine dinucleotide detection at a glassy carbon electrode modified with toluidine blue O functionalized multiwall carbon nanotubes. (39/726)

The toluidine blue O (TBO) functionalized multiwall carbon nanotubes (MWNTs) nanomaterials (TBO-MWNTs) were prepared by assembling TBO onto the surface of a MWNTs modified glassy carbon (GC) electrode. Also TBO-MWNTs modified GC electrodes exhibiting a strong and stable electrocatalytic response toward beta-nicotinamide adenine dinucleotide (NADH) were described. Compared with a bare GC electrode, the TBO-MWNTs modified GC electrodes could decrease the oxidization overpotential of NADH by 730 mV, with a peak current at 0.0 V, since there was a positively synergistic electrocatalytic effect between the MWNTs and TBO toward NADH. Furthermore, the TBO-MWNTs modified GC electrodes had perfect performances, such as a low detection limit (down to 0.5 microM), being very stable (the current diminutions is lower than 6% in a period over 35 min), a fast response (within 3 s), and a wide linear range (from 2.0 microM to 3.5 mM). Such an ability of TBO-MWNTs to promote the NADH electron-transfer reaction suggests great promise for dehydrogenase-based amperometric biosensors.  (+info)

Effects of electric fields on proton transport through water chains. (40/726)

Molecular dynamics simulations on quantum energy surfaces are carried out to study the effects of perturbing electric fields on proton transport (PT) in protonated water chains. As an idealized model of a hydrophobic cavity in the interior of a protein the water molecules are confined into a carbon nanotube (CNT). The water chain connects a hydrated hydronium ion (H3O+) at one end of the CNT and an imidazole molecule at the other end. Without perturbing electric fields PT from the hydronium proton donor to the imidazole acceptor occurs on a picosecond time scale. External perturbations to PT are created by electric fields of varying intensities, normal to the CNT axis, generated by a neutral pair of charges on the nanotube wall. For fields above approximately 0.5 VA, the hydronium ion is effectively trapped at the CNT center, and PT blocked. Fields of comparable strength are generated inside proteins by nearby polar/charged amino acids. At lower fields the system displays a rich dynamic behavior, where the excess charge shuttles back and forth along the water chain before reaching the acceptor group on the picosecond time scale. The effects of the perturbing field on the proton movement are analyzed in terms of structural and dynamic properties of the water chain. The implications of these observations on PT in biomolecular systems and its control by external perturbing fields are discussed.  (+info)