Direct observation of the reversible unwinding of a single DNA molecule caused by the intercalation of ethidium bromide. (1/123)

Ethidium bromide (EtBr) is the conventional intercalator for visualizing DNA. Previous studies suggested that EtBr lengthens and unwinds double-stranded DNA (dsDNA). However, no one has observed the unwinding of a single dsDNA molecule during intercalation. We developed a simple method to observe the twisting motions of a single dsDNA molecule under an optical microscope. A short dsDNA was attached to a glass surface of a flow chamber at one end and to a doublet bead as a rotation marker at the other end. After the addition and removal of EtBr, the bead revolved in opposite directions that corresponded to the unwinding and rewinding of a dsDNA, respectively. The amount of intercalating EtBr was estimated from the revolutions of the bead. EtBr occupied 57% of base pairs on a single dsDNA at 1 mM of EtBr, indicating that EtBr molecules could bind at contiguous sites to each other. The isotherm of intercalation showed that negative cooperativity existed between adjoining EtBr molecules. The association constant of EtBr and dsDNA (1.9 (+/-0.1) x 10(5) M(-1)) was consistent with that of previous results. Our system is useful to investigate the twisting of a single dsDNA interacting with various chemicals and biomolecules.  (+info)

Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. (2/123)

In an attempt to dissect endocytosis in Nicotiana tabacum L. pollen tubes, two different probes--positively or negatively charged nanogold--were employed. The destiny of internalized plasma membrane domains, carrying negatively or positively charged residues, was followed at the ultrastructural level and revealed distinct endocytic pathways. Time-course experiments and electron microscopy showed internalization of subapical plasma-membrane domains that were mainly recycled to the secretory pathway through the Golgi apparatus and a second mainly degradative pathway involving plasma membrane retrieval at the tip. In vivo time-lapse experiments using FM4-64 combined with quantitative analysis confirmed the existence of distinct internalization regions. Ikarugamycin, an inhibitor of clathrin-dependent endocytosis, allowed us to further dissect the endocytic process: electron microscopy and time-lapse studies suggested that clathrin-dependent endocytosis occurs in the tip and subapical regions, because recycling of positively charged nanogold to the Golgi bodies and the consignment of negatively charged nanogold to vacuoles were affected. However, intact positively charged-nanogold transport to vacuoles supports the idea that an endocytic pathway that does not require clathrin is also present in pollen tubes.  (+info)

Visual recognition and efficient isolation of apoptotic cells with fluorescent-magnetic-biotargeting multifunctional nanospheres. (3/123)

BACKGROUND: Fluorescent-magnetic-biotargeting multifunctional nanospheres are likely to find important applications in bioanalysis, biomedicine, and clinical diagnosis. We have been developing such multifunctional nanospheres for biomedical applications. METHODS: We covalently coupled avidin onto the surfaces of fluorescent-magnetic bifunctional nanospheres to construct fluorescent-magnetic-biotargeting trifunctional nanospheres and analyzed the functionality and specificity of these trifunctional nanospheres for their ability to recognize and isolate apoptotic cells labeled with biotinylated annexin V, which recognizes phosphatidylserine exposed on the surfaces of apoptotic cells. RESULTS: The multifunctional nanospheres can be used in combination with propidium iodide staining of nuclear DNA to identify cells at different phases of the apoptotic process. Furthermore, we demonstrate that apoptotic cells induced by exposure to ultraviolet light can be isolated simply with a magnet from living cells at an efficiency of at least 80%; these cells can then be easily visualized with a fluorescence microscope. CONCLUSIONS: Our results show that fluorescent-magnetic-biotargeting trifunctional nanospheres can be a powerful tool for rapidly recognizing, magnetically enriching and sorting, and simultaneously identifying different kinds of cells.  (+info)

Extracellular self-assembly of virus-like particles from secreted recombinant polyoma virus major coat protein. (4/123)

Mouse polyoma virus major coat protein (VP1) expressed from a recombinant baculovirus is efficiently transported to infected cell nuclei and assembles into protein nanospheres morphologically similar to natural capsids. The nanospheres readily combine with plasmid DNA to form a hybrid gene therapy agent known as virus-like particles (VLPs). To facilitate large-scale production of VLPs free from cellular contaminants, the use of stable Drosophila cell lines expressing either wild-type protein, or VP1 tagged with a secretion signal for targeting to the extracellular medium, was investigated. Both wild-type and tagged VP1 expressed at 2-4 mg VP1/litre of culture. As expected, the wild-type protein self-assembled into VLPs. The tagged VP1 was efficiently secreted to the extracellular medium but was also glycosylated, unlike wild-type VP1. Despite this fact, a small fraction of the recombinant secreted protein assembled into VLP-like structures that had altered disulphide bonding, but were still biologically active. These results demonstrate the considerable tolerance in the nanosphere assembly to structural (i.e. aberrant glycosylation) and environmental (i.e. extracellular medium vs. nuclear milieu) changes. Thus, with modifications to improve nanosphere assembly, the secretion method could be adapted to large-scale preparation of VLPs, providing significant advantages over current methods of production of the vector.  (+info)

Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. (5/123)


HER-2-mediated endocytosis of magnetic nanospheres and the implications in cell targeting and particle magnetization. (6/123)


Maximum strength for intermolecular adhesion of nanospheres at an optimal size. (7/123)


Studies of the cellular uptake of hydrogel nanospheres and microspheres by phagocytes, vascular endothelial cells, and smooth muscle cells. (8/123)