Human exposure to mosquito-control pesticides--Mississippi, North Carolina, and Virginia, 2002 and 2003. (1/2)

Public health officials weigh the risk for mosquito-borne diseases against the risk for human exposure to pesticides sprayed to control mosquitoes. Response to outbreaks of mosquito-borne diseases has focused on vector control through habitat reduction and application of pesticides that kill mosquito larvae. However, in certain situations, public health officials control adult mosquito populations by spraying ultra-low volume (ULV) (<3 fluid ounces per acre [oz/acre]) mosquito-control (MC) pesticides, such as naled, permethrin, and d-phenothrin. These ULV applications generate aerosols of fine droplets of pesticides that stay aloft and kill mosquitoes on contact while minimizing the risk for exposure to persons, wildlife, and the environment. This report summarizes the results of studies in Mississippi, North Carolina, and Virginia that assessed human exposure to ULV naled, permethrin, and d-phenothrin used in emergency, large-scale MC activities. The findings indicated ULV application in MC activities did not result in substantial pesticide exposure to humans; however, public health interventions should focus on the reduction of home and workplace exposure to pesticides.  (+info)

Inhibition of aflatoxin production by selected insecticides. (2/2)

The insecticide naled completed inhibition production of aflatoxins B1, B2, G1, and G2 by and growth of Aspergillus parasiticus at a 100-ppm (100 microgram/ml) concentration. The insecticides dichlorvos, Landrin, pyrethrum, Sevin, malathion, and Diazinon significantly (P = 0.05) inhibited production of aflatoxins at a 100-ppm concentration. However, at a concentration of 10 ppm, significant inhibition in production of aflatoxins was found only with naled, dichlorvos, Sevin, Landrin, and pyrethrum. Dichlorvos, Landrin, Sevin, and naled inhibited growth of A. parasiticus by 28.9 , 18.9, 15.7, and 100%, respectively, at 100 ppm. Stimulation of growth was observed when diazinon was added to cultures. Aflatoxin B1 was most resistant to inhibition by insecticides, followed by G1, G2, and B2, respectively.  (+info)