Serotonin 5-HT2A receptor induces TGF-beta1 expression in mesangial cells via ERK: proliferative and fibrotic signals. (25/4507)

We examined the links between fibrotic and proliferative pathways for the 5-HT2A receptor in rat mesangial cells. Serotonin (5-hydroxytryptamine, 5-HT) induced transforming growth factor-beta1 (TGF-beta1) mRNA in a concentration-dependent (peak at 30 nM 5-HT) and time-dependent fashion. For 10 nM 5-HT, the effect was noticeable at 1 h and maximal by 6 h. Inhibition of 1) protein kinase C (PKC), 2) mitogen- and extracellular signal-regulated kinase kinase (MEK1) with 2'-amino-3'-methoxyflavone (PD-90859), and 3) extracellular signal-regulated kinase (ERK) with apigenin attenuated this effect. The effect was blocked by antioxidants, N-acetyl-L-cysteine (NAC) and alpha-lipoic acid, and mimicked by direct application of H2O2. TGF-beta1 mRNA induction was also blocked by diphenyleneiodonium and 4-(2-aminoethyl)-benzenesulfonyl fluoride, which inhibit NAD(P)H oxidase, a source of oxidants. 5-HT increased the amount of TGF-beta1 protein, validating the mRNA studies and demonstrating that 5-HT potently activates ERK and induces TGF-beta1 mRNA and protein in mesangial cells. Mapping studies strongly supported relative positions of the components of the signaling cascade as follow: 5-HT2A receptor --> PKC --> NAD(P)H oxidase/reactive oxygen species --> MEK --> ERK --> TGF-beta1 mRNA. These studies demonstrate that mitogenic signaling components (PKC, MEK, and oxidants) are directly linked to the regulation of TGF-beta1, a key mediator of fibrosis. Thus a single stimulus can direct both proliferative and fibrotic signals in renal mesangial cells.  (+info)

Degradation of Japanese encephalitis virus by neutrophils. (26/4507)

The ability of neutrophils to degrade the phagocytosed Japanese encephalitis (JE) virion, via triggering of the respiratory burst and generation of toxic radicals has been investigated. JEV or JEV-induced macrophage derived factor (MDF) induces increase in intracellular oxidative signals with generation of superoxide anion (O2-), via activation of cytosolic NADPH and subsequent formation of hydrogen peroxide, with maximum activity on day 7 post infection. The response was sensitive to anti-MDF antibody treatment. Further, the study revealed rapid degradation of phagocytosed JE viral protein and nucleic acid. The viral protein degradation was partially dependent on the generation of toxic oxygen species as it could be abrogated by pretreatment of the cells with staurosporine.  (+info)

Evidence for a causal role of the renin-angiotensin system in nitrate tolerance. (27/4507)

BACKGROUND: We have previously shown that nitroglycerin (NTG) therapy increases vascular expression of endothelin 1 (ET-1) and stimulates vascular superoxide (O2.-) production via activation of NADH/NADPH oxidases. Both phenomena are stimulated by angiotensin II in vitro, and the renin-angiotensin system is activated during early nitrate therapy. We hypothesized that either angiotensin II or ET-1 may increase vascular O2.- production during nitrate therapy. METHODS AND RESULTS: In New Zealand White rabbits, 3 days of treatment with NTG patches increased plasma renin activity for the entire treatment period. After 24 hours of NTG treatment, angiotensin II type 1 (AT1) receptor expression and vascular ACE activity were significantly decreased. At this time, constrictions to angiotensin I and II were depressed, but there was no loss of NTG vasodilator potency. Within 3 days of continuous NTG treatment, relaxations to NTG were markedly blunted. This was associated with an increase in AT1 receptor mRNA expression, a return of ACE activity back to baseline, and a marked increase in constrictions to angiotensin I and II despite continuously increased plasma renin activity. Tolerance was associated with a 2-fold increase in vascular O2.-, as estimated by lucigenin-enhanced chemiluminescence. Concomitant treatment with the AT1 receptor antagonist losartan (5 to 25 mg. kg-1. d-1) dose-dependently normalized vascular O2.- and prevented tolerance to NTG and cross-tolerance to endogenous nitric oxide released by acetylcholine. The nonselective ET-1 receptor blocker bosentan (100 mg. kg-1. d-1) had similar but less pronounced effects. CONCLUSIONS: The positive effects of AT1 and ET-1 receptor blockade on tolerance and O2.- production imply a pathophysiological role for angiotensin II and to some extent for ET-1 in the development of nitrate tolerance.  (+info)

Wheat germ agglutinin induces NADPH-oxidase activity in human neutrophils by interaction with mobilizable receptors. (28/4507)

Wheat germ agglutinin (WGA), a lectin with specificity for N-acetylglucosamine and sialic acid, was investigated with respect to its ability to activate the NADPH-oxidase of in vivo-exudated neutrophils (obtained from a skin chamber), and the activity was compared to that of peripheral blood neutrophils. The exudate cells responded to WGA, by both releasing reactive oxygen species into the extracellular milieu and producing oxygen metabolites intracellularly. The peripheral blood cells were unresponsive. To mimic the in vivo-exuded neutrophils with regards to receptor exposure, peripheral blood neutrophils were induced to mobilize their granules and vesicles to varying degrees (in vitro priming), prior to challenge with WGA. The oxidative response to WGA increased with increasing levels of granule mobilization, and the receptor(s) could be shown to reside in the secretory vesicles and/or the gelatinase granules in resting neutrophils. Several WGA-binding glycoproteins were detected in subcellular fractions containing these organelles. The extra- and intracellular NADPH-oxidase responses showed differences in sialic acid dependency, indicating that these two responses are mediated by different receptor structures.  (+info)

The synthetic non-toxic drug 2,3-dimethyl-6(2-dimethylaminoethyl)-6H-indolo-(2,3-b)quinoxaline inhibits neutrophil production of reactive oxygen species. (29/4507)

The effects of the non-toxic drug 2,3-dimethyl-6(2-dimethylaminoethyl)-6H-indolo-(2,3-b)quinoxaline (B220) on the generation of reactive oxygen species froin human neutrophils were investigated. The data show that B220 inhibits neutrophil release of reactive oxygen species, as well as intracellular generation of reactive oxygen species. The inhibition is not achieved through direct oxygen radical scavenger activity of B220, and the drug has no immediate effects on the activity of the assembled oxidase. Radical production and release were inhibited by all agonists tested [i.e. the protein kinase C-activating phorbol ester phobol myristate acetate; the receptor-specific agonist N-formyl-methionyl-leucyl-phenylalanine (fMLP); and serum-opsonized yeast particles] in the presence of B220. The drug also inhibits phagocytosis and fMLP-induced mobilization of granules. However, based on the fact that the effects of B220 on phagocytosis and granule mobilization are much less significant than its effect on radical production, we suggest that the signal(s) affected by B220 is (are) located mainly downstream of the point at which the signals are generated to promote oxidase activation and phagocytosis or granule secretion, respectively.  (+info)

Helicobacter pylori lipopolysaccharide enhances the expression of NADPH oxidase components in cultured guinea pig gastric mucosal cells. (30/4507)

Recently, we showed that cultured guinea pig gastric pit cells possess a phagocyte NADPH oxidase-like activity, which was up-regulated by Helicobacter pylori lipopolysaccharide. We demonstrate here that these cells express all of the phagocyte NADPH oxidase components (gp91-, p22-, p67-, p47-, and p40-phoxes). Treatment with lipopolysaccharide increased the expression of gp91-, p22-, and p67-phoxes, but not that of p47- and p40-phoxes. Intriguingly, the p67-phox expression consistently correlated with up-regulation of superoxide anion-producing ability. Thus, the gastric pit cell NADPH oxidase may play an important role in regulation of the inflammatory response associated with H. pylori infection.  (+info)

Significance of fatty acids in pregnancy-induced immunosuppression. (31/4507)

Pregnancy can exert suppressive effects on chronic inflammatory conditions. We have previously demonstrated a depression in polymorphonuclear leukocyte (PMN) respiratory burst during pregnancy which could explain this amelioration. To elucidate the biochemical mechanism, we have examined PMN phospholipase A2 (PLA2) activity and its relationship to cellular and circulating fatty acids in pregnant women (30 to 34 weeks) and nonpregnant controls. PMN PLA2 activity was determined by arachidonic acid (AA) and leukotriene B4 (LTB4) release, respiratory burst activity was determined by lucigenin-enhanced chemiluminescence, and total serum and PMN fatty acid levels were determined by gas-liquid chromatography. AA release was significantly reduced for pregnancy PMNs in response to N-formyl-met-leu-phe (fMLP) under unprimed and tumor necrosis factor alpha (TNF-alpha)- or interleukin 8-primed conditions. Similarly, LTB4 liberation was significantly reduced in response to fMLP and phorbol myristate acetate in unprimed and TNF-alpha-primed pregnancy PMNs. All major fatty acid classes were altered in the pregnant state. Of these differences in PMNs, oleic acid and alpha-linolenic acid showed a significant increase (13 and 26%, respectively) and stearic acid and AA showed a significant decrease (8 and 30%, respectively). The stearic acid, oleic acid, and AA compositions of all cells analyzed correlated with their corresponding changes in serum fatty acid levels. Crossover serum incubations modified both fatty acid profiles and the PMN respiratory burst accordingly, while individual fatty acid incorporation studies highlighted the importance of polyunsaturated fatty acids for NADPH oxidase efficiency. These findings indicate that the attenuation of PMN function in pregnancy may originate from a reduction in the available pool of cellular fatty acids. Furthermore, this reduction arises as a direct result of a pregnancy-induced shift in circulating fatty acids from polyunsaturated to monounsaturated forms.  (+info)

Activation of the phagocyte NADPH oxidase protein p47(phox). Phosphorylation controls SH3 domain-dependent binding to p22(phox). (32/4507)

Activation of phagocyte NADPH oxidase requires interaction between p47(phox) and p22(phox). p47(phox) in resting phagocytes does not bind p22(phox). Phosphorylation of serines in the p47(phox) C terminus enables binding to the p22(phox) C terminus by inducing a conformational change in p47(phox) that unmasks the SH3A domain. We report that an arginine/lysine-rich region in the p47(phox) C terminus binds the p47(phox) SH3 domains expressed in tandem (SH3AB) but does not bind the individual N-terminal SH3A and C-terminal SH3B domains. Peptides matching amino acids 301-320 and 314-335 of the p47(phox) arginine/lysine-rich region block the p47(phox) SH3AB/p22(phox) C-terminal and p47(phox) SH3AB/p47(phox) C-terminal binding and inhibit NADPH oxidase activity in vitro. Peptides with phosphoserines substituted for serines 310 and 328 do not block binding and are poor inhibitors of oxidase activity. Mutated full-length p47(phox) with aspartic acid substitutions to mimic the effects of phosphorylations at serines 310 and 328 bind the p22(phox) proline-rich region in contrast to wild-type p47(phox). We conclude that the p47(phox) SH3A domain-binding site is blocked by an interaction between the p47(phox) SH3AB domains and the C-terminal arginine/lysine-rich region. Phosphorylation of serines in the p47(phox) C terminus disrupts this interaction leading to exposure of the SH3A domain, binding to p22(phox), and activation of the NADPH oxidase.  (+info)