N-methyl-D-aspartate excitotoxicity: relationships among plasma membrane potential, Na(+)/Ca(2+) exchange, mitochondrial Ca(2+) overload, and cytoplasmic concentrations of Ca(2+), H(+), and K(+). (65/2269)

A high cytoplasmic Na(+) concentration may contribute to N-methyl-D-aspartate (NMDA)-induced excitotoxicity by promoting Ca(2+) influx via reverse operation of the Na(+)/Ca(2+) exchanger (NaCaX), but may simultaneously decrease the electrochemical Ca(2+) driving force by depolarizing the plasma membrane (PM). Digital fluorescence microscopy was used to compare the effects of Na(+) versus ions that do not support the NaCaX operation, i.e., N-methyl-D-glucamine(+) or Li(+), on: PM potential; cytoplasmic concentrations of Ca(2+), H(+), and K(+); mitochondrial Ca(2+) storage; and viability of primary cultures of cerebellar granule cells exposed to NMDA receptor agonists. In the presence of Na(+) or Li(+), NMDA depolarized the PM and decreased cytoplasmic pH (pH(C)); in the presence of Li(+), Ca(2+) influx was reduced, mitochondrial Ca(2+) overload did not occur, and the cytoplasm became more acidified than in the presence of Na(+). In the presence of N-methyl-D-glucamine(+), NMDA instantly hyperpolarized the PM, but further changes in PM potential and pH(C) were Ca-dependent. In the absence of Ca(2+), hyperpolarization persisted, pH(C) was decreasing very slowly, K(+) was retained in the cytoplasm, and cerebellar granule cells survived the challenge; in the presence of Ca(2+), pH(C) dropped rapidly, the K(+) concentration gradient across the PM began to collapse as the PM began to depolarize, and Ca(2+) influx and excitotoxicity greatly increased. These results indicate that the dominant, very likely excitotoxic, component of NMDA-induced Ca(2+) influx is mediated by reverse NaCaX and that direct Ca(2+) influx via NMDA channels is curtailed by Na-dependent PM depolarization.  (+info)

N-methyl-D-aspartate receptor agonists modulate homocysteine-induced developmental abnormalities. (66/2269)

We showed previously that the induction of neural crest (NC) and neural tube (NT) defects is a general property of N-methyl-D-aspartate receptor (NMDAR) antagonists. Since homocysteine induces NC and NT defects and can also act as an NMDAR antagonist, we hypothesized that the mechanism of homocysteine-induced developmental defects is mediated by competitive inhibition of the NMDAR by homocysteine. If this hypothesis is correct, homocysteine-induced defects will be reduced by NMDAR agonists. To test the hypothesis, we treated chicken embryos during the process of neural tube closure with sufficient homocysteine thiolactone to induce NC and NT defects in approximately 40% of survivors or with homocysteine thiolactone in combination with each of a selected set of NMDAR agonists in 0. 05-5000 nmol doses. Glutamate site agonists selected were L-glutamate and N-methyl-D-aspartate. Glycine site agonists were glycine, D-cycloserine, and aminocyclopropane-carboxylic acid. Glycine was the most effective overall, reducing defects significantly at two different doses (each P>0.001). These results support the hypothesis that homocysteine may affect NC and NT development by its ability to inhibit the NMDAR. One potentially important consequence of this putative mechanism is that homocysteine may interact synergistically with other NMDAR antagonists to enhance its effect on development.  (+info)

N-methyl-D-aspartate (NMDA)--induced apoptosis in rat retina. (67/2269)

PURPOSE: The involvement of apoptosis in N-methyl-D-aspartate (NMDA)-induced excitotoxicity in adult rat retinas was examined. METHODS: Excitotoxic loss of inner retinal elements was induced by intravitreal injections of various concentrations of neutralized NMDA in adult albino Lewis rats. Tissue responses were quantified by measuring the inner retinal thickness (IRT) in plastic sections of the retinas and cell counts in the retinal ganglion cell layer in flatmount preparations of the whole retinas. Internucleosomal DNA fragmentation, a hallmark of apoptosis, was assayed with agarose DNA gel electrophoresis. The in situ TdT-mediated biotin-dUTP nick end labeling (TUNEL) method was used to locate nicked DNA in paraffin sections of the retinas. Ultrastructural changes of the degenerating cells were examined by electron microscopy. The efficacy of Ac-Tyr-Val-Ala-Asp-CMK (YVAD-CMK), a peptidyl caspase inhibitor, and 3-aminobenzamide (ABA), an inhibitor of poly(ADP-ribose) polymerase (PARP), in ameliorating the loss of inner retinal elements was evaluated using morphometry to examine the apoptotic pathways. RESULTS: Intravitreal injection of NMDA induced a dose-dependent loss of inner retinal elements as evidenced by the measurements of IRT and RGCCs. There were time- and dose-related appearances of internucleosomal fragmentation of retinal DNA and a time-related appearance of TUNEL-positive nuclei in the inner retinas after intravitreal NMDA injection. Ultrastructural features consistent with classic apoptotic changes were noted in degenerating cells in the retinal ganglion cell layer and the inner nuclear layer. Control retinas given vehicle, N-methyl-L-aspartate (the L-isomer of NMDA), or NMDA plus MK-801, a specific antagonist, did not show these changes. Simultaneous administration of NMDA and YVAD-CMK or ABA abolished or attenuated the loss of RGCCs in the posterior retinas. CONCLUSIONS: NMDA-induced excitotoxicity involved apoptosis and caspases and PARP may play important roles in the pathways.  (+info)

The taste of monosodium glutamate (MSG), L-aspartic acid, and N-methyl-D-aspartate (NMDA) in rats: are NMDA receptors involved in MSG taste? (68/2269)

Monosodium glutamate (MSG) is believed to elicit a unique taste perception known as umami. We have used conditioned taste aversion assays in rats to compare taste responses elicited by the glutamate receptor agonists MSG, L-aspartic acid (L-Asp), and N-methyl-D-aspartate (NMDA), and to determine if these compounds share a common taste quality. This information could shed new light upon the receptor mechanisms of glutamate taste transduction. Taste aversions to either MSG, L-Asp or NMDA were produced by injecting rats with LiCl after they had ingested one of these stimuli. Subsequently, rats were tested to determine whether they would ingest any of the above compounds. The results clearly show that a conditioned aversion to MSG generalized to L-Asp in a dose-dependent manner. Conversely, rats conditioned to avoid L-Asp also avoided MSG. Conditioned aversions to MSG or L-Asp generalized to sucrose when amiloride was included in all solutions. Importantly, aversions to MSG or L-Asp did not generalize to NMDA, NaCl or KCl, and aversions to NMDA did not generalize to MSG, L-Asp, sucrose or KCl. These data indicate that rats perceive MSG and L-Asp as similar tastes, whereas NMDA, NaCl and KCl elicit other tastes. The results do not support a dominant role for the NMDA subtype of glutamate receptors in taste transduction for MSG (i.e. umami) in rats.  (+info)

GABAB-Receptor-mediated currents in interneurons of the dentate-hilus border. (69/2269)

GABA(B)-receptor-mediated inhibition was investigated in anatomically identified inhibitory interneurons located at the border between the dentate gyrus granule cell layer and hilus. Biocytin staining was used to visualize the morphology of recorded cells. A molecular layer stimulus evoked a pharmacologically isolated slow inhibitory postsynaptic current (IPSC), recorded with whole cell patch-clamp techniques, in 55 of 63 interneurons. Application of the GABA(B) receptor antagonists, CGP 35348 (400 microM) or CGP 55845 (1 microM) to a subset of 25 interneurons suppressed the slow IPSC by an amount ranging from 10 to 100%. In 56% of these cells, the slow IPSC was entirely GABA(B)-receptor-mediated. However, in the remaining interneurons, a component of the slow IPSC was resistant to GABA(B) antagonists. Subtraction of this antagonist resistant current from the slow IPSC isolated the GABA(B) component (IPSC(B)). This IPSC(B) had a similar onset and peak latency to that recorded from granule cells but a significantly shorter duration. The GABA(B) agonist, baclofen (10 microM), produced a CGP 55845-sensitive outward current in 19 of 27 interneurons. In the eight cells that lacked a baclofen current, strong or repetitive ML stimulation also failed to evoke an IPSC(B), indicating that these cells lacked functional GABA(B) receptor-activated potassium currents. In cells that expressed a baclofen current, the amplitude of this current was approximately 50% smaller in interneurons with axons that projected into the granule cell dendritic layer (22.2 +/- 5.3 pA; mean +/- SE) than in interneurons with axons that projected into or near the granule cell body layer (46.1 +/- 10.0 pA). Similarly, the IPSC(B) amplitude was smaller in interneurons projecting to dendritic (9.4 +/- 2.7 pA) than perisomatic regions (34.3 +/- 5.1 pA). These findings suggest that GABA(B) inhibition more strongly regulates interneurons with axons that project into perisomatic than dendritic regions. To determine the functional role of GABA(B) inhibition, we examined the effect of IPSP(B) on action potential firing and synaptic excitation of these interneurons. IPSP(B) and IPSP(A) both suppressed depolarization-induced neuronal firing. However, unlike IPSP(A), suppression of firing by IPSP(B) could be easily overcome with strong depolarization. IPSP(B) markedly suppressed N-methyl-D-aspartate but not AMPA EPSPs, suggesting that GABA(B) inhibition may play a role in regulating slow synaptic excitation of these interneurons. Heterogeneous expression of GABA(B) currents in hilar border interneurons therefore may provide a mechanism for the differential regulation of excitation of these cells and thereby exert an important role in shaping neuronal activity in the dentate gyrus.  (+info)

Inflammatory cytokines IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha impart neuroprotection to an excitotoxin through distinct pathways. (70/2269)

The proinflammatory cytokines IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha are produced within the CNS, and, similar to the periphery, they have pleotrophic and overlapping functions. We have shown previously that TNF-alpha increases neuronal survival to a toxic influx of calcium mediated through neuronal N-methyl-d -aspartic acid (NMDA) glutamate-gated ion channels. This process, termed excitotoxicity, is a major contributor to neuronal death following ischemia or stroke. Neuroprotection by this cytokine requires both activation of the p55/TNF receptor type I and the release of TNF-alpha from neurons, and it is inhibited by the plant alkaloid nicotine. Here, we report that other inflammatory cytokines (IL-1 alpha, IL-1 beta, and IL-6) are also neuroprotective to excessive NMDA challenge in our system. Neuroprotection provided by IL-1 is distinct from TNF-alpha because it is inhibited by IL-1 receptor antagonist; it is not antagonized by nicotine, but it is inhibited by a neutralizing Ab to nerve growth factor (NGF). Similar to IL-1, IL-6-mediated neuroprotection is also antagonized by pretreatment with IL-1 receptor antagonist and it is not affected by nicotine. However, neutralizing anti-NGF only partially blocks IL-6-mediated protection. These studies support an important role for distinct but overlapping neuroprotective cytokine effects in the CNS.  (+info)

NMDA-induced dendritic oscillations during a soma voltage clamp of chick spinal neurons. (71/2269)

An investigation of dendritic membrane properties was performed by whole-cell patch measurements of the biophysical properties of intact chick spinal neurons that are involved in rhythmogenesis. A whole-cell voltage clamp of the somatic membrane was used to block NMDA-induced voltage oscillations from the cell body, thus partially isolating the intrinsic oscillatory properties of dendritic membranes from those of the soma. An experimental approach was developed that takes into account the complexity of the dendritic tree in an environment as normal as possible, without the need for cell isolation or slice preparations. A computational study of the experimentally determined model showed that excitatory amino acid receptors on dendrites can dynamically control the electrotonic length of the dendrites through the activation of negative slope conductances. These experiments demonstrate the presence of NMDA receptors on the dendrites and that they induce intrinsic oscillations when the synaptic input from other cells is significantly reduced.  (+info)

Measurement of intracellular free zinc concentrations accompanying zinc-induced neuronal death. (72/2269)

Toxic zinc influx may contribute to selective neuronal death after transient global ischemia. We previously used the high-affinity (K(D) = 27 nm) fluorescent dye mag-fura-5 to detect initial increases in neuronal intracellular free Zn(2+) ([Zn(2+)](i)) associated with brief Zn(2+) exposure. Here we used the specific low-affinity Zn(2+) indicator Newport Green (K(D) = 1 microm) to measure the peak levels of [Zn(2+)](i) attained during prolonged, toxic exposures to extracellular Zn(2+). Murine cortical cell cultures exposed for 5-10 min to 300 microm Zn(2+) in the presence of kainate or elevated extracellular K(+) developed widespread neuronal death over the next 24 hr. Such Zn(2+) exposure under depolarizing conditions was accompanied by a large increase in [Zn(2+)](i) reaching several hundred nanomolar, which gradually recovered over the next 20-40 min after termination of Zn(2+) exposure. Both the level of [Zn(2+)](i) elevation and the extent of subsequent neuronal death depended on the concentration of extracellular Zn(2+) between 30 microm and 1 mm. In contrast, exposure to 300 microm Zn(2+) in the presence of 300 microm NMDA resulted in little increase in [Zn(2+)](i) and little neuronal death, suggesting that NMDA receptor-gated channels are less important as a route of toxic Zn(2+) entry than voltage-gated calcium channels.  (+info)