Assessment of Thy-1 mRNA levels as an index of retinal ganglion cell damage. (33/2269)

PURPOSE: Thy-1 is primarily, if not entirely, expressed by the ganglion cells within the retina. This knowledge was used to index ganglion cell death after ischemia and excitotoxicity by studying changes in Thy-1 mRNA levels. METHODS: Insults to the rat retina were delivered either by elevation of intraocular pressure for 60 minutes or by intravitreal injection of N-methyl-D-aspartate (NMDA). After a defined period, changes in Thy-1 immunoreactivity and mRNA levels of Thy-1 and NR1 (NMDA receptor subunit) were used to index ganglion cell sensitivity to damage. Opsin mRNA levels were used as an internal control because photoreceptors lack NMDA receptors. RESULTS: Retinal Thy-1 immunoreactivity, associated with the ganglion cell and inner plexiform layers, is reduced by ischemia or intravitreal injections of NMDA in a dose-dependent manner. Using a semi-quantitative polymerase chain reaction (reverse transcription-polymerase chain reaction) methodology, the levels of total retinal Thy-1 and NR1 mRNAs were shown to be dramatically reduced after both transient ischemia and intravitreal injection of NMDA. The effect of NMDA was found to be both time- and dose-dependent. In contrast, no change occurred in the levels of opsin mRNA unless high levels of NMDA (200 nmoles) were administered. CONCLUSIONS: Ischemia and NMDA-induced excitotoxicity caused retinal ganglion cell destruction, but the photoreceptors were unaffected. Measurement of total retinal Thy-1 mRNA levels provides a useful way of following ganglion cell death especially when combined with immunohistochemical localization of Thy-1. Additionally, the effect on other retinal cell types such as the photoreceptors can be followed in concert using this technique.  (+info)

Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami. (34/2269)

Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami. Recent studies of the homozygous tottering (Cacna1atg) and lethargic mouse (Cacnb4(lh)) models of absence seizures have identified mutations in the genes encoding the alpha1A and beta4 subunits, respectively, of voltage-gated Ca2+ channels (VGCCs). beta subunits normally regulate Ca2+ currents via a direct interaction with alpha1 (pore-forming) subunits of VGCCs, and VGCCs are known to play a significant role in controlling the release of transmitter from presynaptic nerve terminals in the CNS. Because the gene mutation in Cacnb4(lh) homozygotes results in loss of the beta4 subunit's binding site for alpha1 subunits, we hypothesized that synaptic transmission would be altered in the CNS of Cacnb4(lh) homozygotes. We tested this hypothesis by using whole cell recordings of single cells in an in vitro slice preparation to investigate synaptic transmission in one of the critical neuronal populations that generate seizure activity in this strain, the somatosensory thalamus. The primary finding reported here is the observation of a significant decrease in glutamatergic synaptic transmission mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA receptors in somatosensory thalamic neurons of Cacnb4(lh) homozygotes compared with matched, nonepileptic mice. In contrast, there was no significant decrease in GABAergic transmission in Cacnb4(lh) homozygotes nor was there any difference in effects mediated by presynaptic GABAB receptors. We found a similar decrease in glutamatergic but not GABAergic responses in Cacna1atg homozygotes, suggesting that the independent mutations in the two strains each affected P/Q channel function by causing defective neurotransmitter release specific to glutamatergic synapses in the somatosensory thalamus. This may be an important factor underlying the generation of seizures in these models.  (+info)

AV3V lesions attenuate the cardiovascular responses produced by blood-borne excitatory amino acid analogs. (35/2269)

Systemic injections of the excitatory amino acid (EAA) analogs, kainic acid (KA) and N-methyl-D-aspartate (NMDA), produce a pressor response in conscious rats that is caused by a centrally mediated activation of sympathetic drive and the release of arginine vasopressin (AVP). This study tested the hypothesis that the tissue surrounding the anteroventral part of the third ventricle (AV3V) plays a role in the expression of the pressor responses produced by systemically injected EAA analogs. Specifically, we examined whether prior electrolytic ablation of the AV3V region would affect the pressor responses to KA and NMDA (1 mg/kg iv) in conscious rats. The KA-induced pressor response was smaller in AV3V-lesioned than in sham-lesioned rats (11 +/- 2 vs. 29 +/- 2 mmHg; P < 0.05). After ganglion blockade, KA produced a pressor response in sham-lesioned but not AV3V-lesioned rats (+27 +/- 3 vs. +1 +/- 2 mmHg; P < 0.05). The KA-induced pressor response in ganglion-blocked sham-lesioned rats was abolished by a vasopressin V1-receptor antagonist. Similar results were obtained with NMDA. The pressor response to AVP (10 ng/kg iv) was slightly smaller in AV3V-lesioned than in sham-lesioned ganglion-blocked rats (45 +/- 3 vs. 57 +/- 4 mmHg; P < 0.05). This study demonstrates that the pressor responses to systemically injected EAA analogs are smaller in AV3V-lesioned rats. The EAA analogs may produce pressor responses by stimulation of EAA receptors in the AV3V region, or the AV3V region may play an important role in the expression of these responses.  (+info)

Factors that enhance ethanol inhibition of N-methyl-D-aspartate receptors in cerebellar granule cells. (36/2269)

The objective of this study was to identify factors that influence ethanol (EtOH) inhibition of the N-methyl-D-aspartate receptor (NMDAR) in primary cultured cerebellar granule cells. Several factors contributing to the inhibitory effects of EtOH on NMDAR function were assessed using both whole-cell and perforated patch-clamp recordings. The NMDAR subunit composition was examined by Western blot analysis using NR2 subunit-specific antibodies and pharmacological manipulation with the NR2B-specific antagonist infenprodil. Western blot analysis indicated that NMDAR subunit composition changed from a combination of NR2A and NR2B containing NMDARs to primarily NR2A with increasing days in vitro (DIV). Although the NR2B subunit was detectable until 21 DIV, there was a significant decrease in ifenprodil sensitivity after 7 DIV. EtOH sensitivity did not change with an increasing DIV. A high concentration of glycine reversed EtOH inhibition of steady-state, but not peak, NMDA-induced current during whole-cell recordings. Significant glycine reversal of effects of a low concentration of EtOH on peak current was observed under perforated patch-clamp conditions. A 30-s EtOH pretreatment significantly enhanced EtOH inhibition of NMDA-induced peak current. Collectively, these results indicate that EtOH sensitivity of the NMDAR in primary cultured cerebellar granule cells is not related to subunit composition nor ifenprodil sensitivity, involves a kinetic interaction with glycine, and can be enhanced by a slowly developing transduction mechanism that occurs within tens of seconds.  (+info)

(R,S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. (37/2269)

Group III metabotropic glutamate receptors (mGluRs) are thought to modulate neurotoxicity of excitatory amino acids, via mechanisms of presynaptic inhibition, such as regulation of neurotransmitter release. Here, we describe (R,S)-4-phosphonophenylglycine (PPG) as a novel, potent, and selective agonist for group III mGluRs. In recombinant cell lines expressing the human receptors hmGluR4a, hmGluR6, hmGluR7b, or hmGluR8a, EC50 values for (R,S)-PPG of 5.2 +/- 0.7 microM, 4.7 +/- 0.9 microM, 185 +/- 42 microM, and 0.2 +/- 0.1 microM, respectively, were measured. The compound showed EC50 and IC50 values of >/=200 microM at group I and II hmGluRs and was inactive at cloned human N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate, and kainate receptors (>300 microM). On the other hand, it showed micromolar affinity for a Ca2+/Cl--dependent L-glutamate binding site in rat brain, similar to other phosphono-substituted amino acids like L-2-amino-4-phosphonobutyrate. In cultured cortical neurons, (R, S)-PPG provided protection against a toxic pulse of N-methyl-D-aspartate (EC50 = 12 microM), which was reversed by the group III mGluR antagonist (R,S)-alpha-methylserine-O-phosphate but not by the group II antagonist (2S)-alpha-ethylglutamate. Moreover, (R,S)-PPG protected against N-methyl-D-aspartate- and quinolinic acid-induced striatal lesions in rats and was anticonvulsive in the maximal electroshock model in mice. In contrast to the group III mGluR agonists L-2-amino-4-phosphonobutyrate and L-serine-O-phosphate, (R,S)-PPG showed no proconvulsive effects (2200 nmol i.c.v.). These data provide novel in vivo evidence for group III mGluRs as attractive targets for neuroprotective and anticonvulsive therapy. Also, (R,S)-PPG represents an attractive tool to analyze the roles of group III mGluRs in nervous system physiology and pathology.  (+info)

Identifying inner retinal contributions to the human multifocal ERG. (38/2269)

Contributions to the multifocal electroretinogram (ERG) from the inner retina (i.e. ganglion and amacrine cells) were identified by recording from monkeys before and after intravitreal injections of n-methyl DL aspartate (NMDLA) and/or tetrodotoxin (TTX). Components similar in waveform to those removed by the drugs were identified in the human multifocal ERG if the stimulus contrast was set at 50% rather than the typically employed 100% contrast. These components were found to be missing or diminished in the records from some patients with glaucoma and diabetes, diseases which affect the inner retina.  (+info)

Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. (39/2269)

The efficiency with which N-methyl-D-aspartate receptors (NMDARs) trigger intracellular signaling pathways governs neuronal plasticity, development, senescence, and disease. In cultured cortical neurons, suppressing the expression of the NMDAR scaffolding protein PSD-95 (postsynaptic density-95) selectively attenuated excitotoxicity triggered via NMDARs, but not by other glutamate or calcium ion (Ca2+) channels. NMDAR function was unaffected, because receptor expression, NMDA currents, and 45Ca2+ loading were unchanged. Suppressing PSD-95 blocked Ca2+-activated nitric oxide production by NMDARs selectively, without affecting neuronal nitric oxide synthase expression or function. Thus, PSD-95 is required for efficient coupling of NMDAR activity to nitric oxide toxicity, and imparts specificity to excitotoxic Ca2+ signaling.  (+info)

Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. (40/2269)

Although there is substantial evidence that glutamate mimics the effects of light on the mammalian circadian clock in vitro, it has been reported that microinjection of glutamate into the suprachiasmatic nucleus of the hypothalamus (SCN) region in vivo does not result in a pattern of phase shifts that mimic those caused by light pulses. The present study was designed to test the hypothesis that microinjection of NMDA into the SCN would induce light-like phase shifts of the circadian clock through activation of the NMDA receptor. Hamsters housed in constant darkness received microinjections of NMDA through guide cannulas aimed at the SCN region at various times throughout the circadian cycle. Wheel running was monitored as a measure of circadian phase. Microinjection of NMDA resulted in circadian phase shifts, the size and direction of which were dependent on the time of injection. The resulting phase-response curve closely resembled that of light. The circadian response showed a clear dose-dependence at circadian time (CT) 13.5 but not at CT19. Both phase delays and advances induced by NMDA were blocked by coinjection of the NMDA antagonist 2-amino-5-phosphopentanoic acid but were slightly attenuated by the non-NMDA antagonist 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione disodium. The ability of NMDA to induce phase shifts was not altered by coinjection with tetrodotoxin. These data are consistent with the hypothesis that activation of NMDA receptors is a critical step in the transmission of photic information to the SCN.  (+info)