Cell surface sialic acid and the regulation of immune cell interactions: the neuraminidase effect reconsidered. (1/1549)

It has been known for over a decade that sialidase (neuraminidase) treatment could substantially enhance the capacity of resting B cells to stimulate the proliferation of allogeneic and antigen specific, syngeneic T cells. Thus, cell-surface sialic acid was implicated as a potential modulator of immune cell interaction. However, little progress has been made in either identifying explicit roles for sialic acid in this system or in hypothesizing mechanisms to explain the "neuraminidase effect." Here we show for the first time that cell surface sialic acid on medium incubated B cells blocks access to costimulatory molecules on the B cell surface, and that this is the most likely explanation for the neuraminidase effect. Further, we show that it is likely to be upregulation of ICAM-1 and its subsequent engagement of LFA-1 rather than loss of cell surface sialic acid that in part regulates access to CD86 and other costimulatory molecules. However, we cannot exclude a role for CD86-bound sialic acid on the B cell in modulating binding to T cell CD28. Because sialidase treatment of resting B cells but not resting T cells enables T cell activation, we suggest that sialidase treatment may still be an analogue for an authentic step in B cell activation, and show that for highly activated B cells (activated with polyclonal anti-IgM plus INF-gamma) there is specific loss 2, 6-linked sialic acid. Potential roles for sialic acid in modulating B cell/T cell collaboration are discussed.  (+info)

The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. (2/1549)

Bronchial mucins were purified from the sputum of 14 patients suffering from cystic fibrosis and 24 patients suffering from chronic bronchitis, using two CsBr density-gradient centrifugations. The presence of DNA in each secretion was used as an index to estimate the severity of infection and allowed to subdivide the mucins into four groups corresponding to infected or noninfected patients with cystic fibrosis, and to infected or noninfected patients with chronic bronchitis. All infected patients suffering from cystic fibrosis were colonized by Pseudomonas aeruginosa. As already observed, the mucins from the patients with cystic fibrosis had a higher sulfate content than the mucins from the patients with chronic bronchitis. However, there was a striking increase in the sialic acid content of the mucins secreted by severely infected patients as compared to noninfected patients. Thirty-six bronchial mucins out of 38 contained the sialyl-Lewis x epitope which was even expressed by subjects phenotyped as Lewis negative, indicating that at least one alpha1,3 fucosyltransferase different from the Lewis enzyme was involved in the biosynthesis of this epitope. Finally, the sialyl-Lewis x determinant was also overexpressed in the mucins from severely infected patients. Altogether these differences in the glycosylation process of mucins from infected and noninfected patients suggest that bacterial infection influences the expression of sialyltransferases and alpha1,3 fucosyltransferases in the human bronchial mucosa.  (+info)

N-Linked glycosylation and sialylation of the acid-labile subunit. Role in complex formation with insulin-like growth factor (IGF)-binding protein-3 and the IGFs. (3/1549)

Over 75% of the circulating insulin-like growth factors (IGF-I and -II) are bound in 140-kDa ternary complexes with IGF-binding protein-3 (IGFBP-3) and the 84-86-kDa acid-labile subunit (ALS), a glycoprotein containing 20 kDa of carbohydrate. The ternary complexes regulate IGF availability to the tissues. Since interactions of glycoproteins can be influenced by their glycan moieties, this study aimed to determine the role of ALS glycosylation in ternary complex formation. Complete deglycosylation abolished the ability of ALS to associate with IGFBP-3. To examine this further, seven recombinant ALS mutants each lacking one of the seven glycan attachment sites were expressed in CHO cells. All the mutants bound IGFBP-3, demonstrating that this interaction is not dependent on any single glycan chain. Enzymatic desialylation of ALS caused a shift in isoelectric point from 4.5 toward 7, demonstrating a substantial contribution of anionic charge by sialic acid. Ionic interactions are known to be involved in the association between ALS and IGFBP-3. Desialylation reduced the affinity of ALS for IGFBP-3. IGF complexes by 50-80%. Since serum protein glycosylation is often modified in disease states, the dependence of IGF ternary complex formation on the glycosylation state of ALS suggests a novel mechanism for regulation of IGF bioavailability.  (+info)

Binding partners for the myelin-associated glycoprotein of N2A neuroblastoma cells. (4/1549)

The myelin-associated glycoprotein (MAG) has been proposed to be important for the integrity of myelinated axons. For a better understanding of the interactions involved in the binding of MAG to neuronal axons, we performed this study to identify the binding partners for MAG on neuronal cells. Experiments with glycosylation inhibitors revealed that sialylated N-glycans of glycoproteins represent the major binding sites for MAG on the neuroblastoma cell line N2A. From extracts of [3H]glucosamine-labelled N2A cells several glycoproteins with molecular weights between 20 and 230 kDa were affinity-precipitated using immobilised MAG. The interactions of these proteins with MAG were sialic acid-dependent and specific for MAG.  (+info)

Capsular sialic acid limits C5a production on type III group B streptococci. (5/1549)

The majority of type III group B streptococcus (GBS) human neonatal infections are caused by a genetically related subgroup called III-3. We have proposed that a bacterial enzyme, C5a-ase, contributes to the pathogenesis of neonatal infections with GBS by rapidly inactivating C5a, a potent pro-inflammatory molecule, but many III-3 strains do not express C5a-ase. The amount of C5a produced in serum following incubation with representative type III strains was quantitated in order to better understand the relationship between C5a production and C5a-ase expression. C5a production following incubation of bacteria with serum depleted of antibody to the bacterial surface was inversely proportional to the sialic acid content of the bacterial capsule, with the more heavily sialylated III-3 strains generating less C5a than the less-virulent, less-sialylated III-2 strains. The amount of C5a produced correlated significantly with C3 deposition on each bacterial strain. Repletion with type-specific antibody caused increased C3b deposition and C5a production through alternative pathway activation, but C5a was functionally inactivated by strains that expressed C5a-ase. The increased virulence of III-3 strains compared to that of III-2 strains results at least partially from the higher sialic acid content of III-3 strains, which inhibits both opsonophagocytic killing and C5a production in the absence of type-specific antibody. We propose that C5a-ase is not necessary for III-3 strains to cause invasive disease because the high sialic acid content of III-3 strains inhibits C5a production.  (+info)

Transport of organic anions by the lysosomal sialic acid transporter: a functional approach towards the gene for sialic acid storage disease. (6/1549)

Transport of sialic acid through the lysosomal membrane is defective in the human sialic acid storage disease. The mammalian sialic acid carrier has a wide substrate specificity for acidic monosaccharides. Recently, we showed that also non-sugar monocarboxylates like L-lactate are substrates for the carrier. Here we report that other organic anions, which are substrates for carriers belonging to several anion transporter families, are recognized by the sialic acid transporter. Hence, the mammalian system reveals once more novel aspects of solute transport, including sugars and a wide array of non-sugar compounds, apparently unique to this system. These data suggest that the search for the sialic acid storage disease gene can be initiated by a functional selection of genes from a limited number of anion transporter families. Among these, candidates will be identified by mapping to the known sialic acid storage disease locus.  (+info)

Enzymatic synthesis of alpha3'sialylated and multiply alpha3fucosylated biantennary polylactosamines. A bivalent [sialyl diLex]-saccharide inhibited lymphocyte-endothelium adhesion organ-selectively. (7/1549)

Multifucosylated sialo-polylactosamines are known to be high affinity ligands for E-selectin. PSGL-1, the physiological ligand of P-selectin, is decorated in HL-60 cells by a sialylated and triply fucosylated polylactosamine that is believed to be of functional importance. Mimicking some of these saccharide structures, we have synthesized enzymatically a bivalent [sialyl diLex]-glycan, Neu5Acalpha2-3'Lexbeta1-3'Lexbeta1-3'(Neu5Acalpha2-3'Lexbeta1-3Lexbe ta1-6')LN [where Neu5Ac is N-acetylneuraminic acid, Lex is the trisaccharide Galbeta1-4(Fucalpha1-3)GlcNAc and LN is the disaccharide Galbeta1-4GlcNAc]. Several structurally related, novel polylactosamine glycans were also constructed. The inhibitory effects of these glycans on two L-selectin-dependent, lymphocyte-to-endothelium adhesion processes of rats were analysed in ex-vivo Stamper-Woodruff binding assays. The IC50 value of the bivalent [sialyl diLex]-glycan at lymph node high endothelium was 50 nm, but at the capillaries of rejecting cardiac allografts it was only 5 nm. At both adhesion sites, the inhibition was completely dependent on the presence of fucose units on the sialylated LN units of the inhibitor saccharide. These data show that the bivalent [sialyl diLex]-glycan is a high affinity ligand for L-selectin, and may reduce extravasation of lymphocytes at sites of inflammation in vivo without severely endangering the normal recirculation of lymphocytes via lymph nodes.  (+info)

Structural basis for the resistance of Tay-Sachs ganglioside GM2 to enzymatic degradation. (8/1549)

To understand the reason why, in the absence of GM2 activator protein, the GalNAc and the NeuAc in GM2 (GalNAcbeta1-->4(NeuAcalpha2-->3)Galbeta1-->4Glcbet a1-1'Cer) are refractory to beta-hexosaminidase A and sialidase, respectively, we have recently synthesized a linkage analogue of GM2 named 6'GM2 (GalNAcbeta1-->6(NeuAcalpha2-->3)Galbeta1-->4Glcbet a1-1'Cer). While GM2 has GalNAcbeta1-->4Gal linkage, 6'-GM2 has GalNAcbeta1-->6Gal linkage (Ishida, H., Ito, Y., Tanahashi, E., Li, Y.-T., Kiso, M., and Hasegawa, A. (1997) Carbohydr. Res. 302, 223-227). We have studied the enzymatic susceptibilities of GM2 and 6'GM2, as well as that of the oligosaccharides derived from GM2, asialo-GM2 (GalNAcbeta1-->4Galbeta1--> 4Glcbeta1-1'Cer) and 6'GM2. In addition, the conformational properties of both GM2 and 6'GM2 were analyzed using NMR spectroscopy and molecular mechanics computation. In sharp contrast to GM2, the GalNAc and the Neu5Ac of 6'GM2 were readily hydrolyzed by beta-hexosaminidase A and sialidase, respectively, without GM2 activator. Among the oligosaccharides derived from GM2, asialo-GM2, and 6'GM2, only the oligosaccharide from GM2 was resistant to beta-hexosaminidase A. Conformational analyses revealed that while GM2 has a compact and rigid oligosaccharide head group, 6'GM2 has an open spatial arrangement of the sugar units, with the GalNAc and the Neu5Ac freely accessible to external interactions. These results strongly indicate that the resistance of GM2 to enzymatic hydrolysis is because of the specific rigid conformation of the GM2 oligosaccharide.  (+info)