Role of the myxoma virus soluble CC-chemokine inhibitor glycoprotein, M-T1, during myxoma virus pathogenesis. (1/59)

Myxoma virus is a poxvirus that causes a virulent systemic disease called myxomatosis in European rabbits. Like many poxviruses, myxoma virus encodes a variety of secreted proteins that subvert the antiviral activities of host cytokines. It was recently demonstrated that the myxoma virus M-T1 glycoprotein is a member of a large poxvirus family of secreted proteins that bind CC-chemokines and inhibit their chemoattractant activities in vitro. To determine the biological role of M-T1 in contributing to myxoma virus virulence, we constructed a recombinant M-T1-deletion mutant virus that was defective in M-T1 expression. Here, we demonstrate that M-T1 is expressed continuously during the course of myxoma virus infection as a highly stable 43-kDa glycoprotein and is dispensable for virus replication in vitro. Deletion of M-T1 had no significant effects on disease progression or in the overall mortality rate of infected European rabbits but heightened the localized cellular inflammation in primary tissue sites during the initial 2 to 3 days of infection. In the absence of M-T1 expression, deep dermal tissues surrounding the primary site of virus inoculation showed a dramatic increase in infiltrating leukocytes, particularly monocytes/macrophages, but these phagocytes remained relatively ineffective at clearing virus infection, likely due to the concerted properties of other secreted myxoma virus proteins. We conclude that M-T1 inhibits the chemotactic signals required for the influx of monocytes/macrophages during the acute-phase response of myxoma virus infection in vivo, as predicted by its ability to bind and inhibit CC-chemokines in vitro.  (+info)

Development of an ELISA for detection of myxoma virus-specific rabbit antibodies: test evaluation for diagnostic applications on vaccinated and wild rabbit sera. (2/59)

An enzyme-linked immunosorbent assay (ELISA) was developed and compared with 2 reference diagnostic tests (indirect immunofluorescence [IF] and complement fixation) to detect myxoma virus-specific antibodies in sera from 50 rabbits experimentally vaccinated with an attenuated strain of myxoma virus or with a Shope fibroma virus. The ELISA was highly specific (100% specificity) and sensitive (100%, 21 days after homologous vaccination). In a comparison of the ELISA with the IF test in 128 wild rabbits from France, discrepant results were obtained in only 11 (8.6%) animals, which were positive with the ELISA and negative with the IF test. The higher sensitivity and the good specificity of the ELISA was confirmed in a serologic survey of 118 rabbits from 2 Kerguelen (Indian Ocean) islands, where the prevalence of myxomatosis varied considerably. The ELISA is an alternative serologic test for diagnosis, vaccine evaluation, and seroepidemiologic surveys of myxomatosis.  (+info)

Myxomatosis: passive immunity in the offspring of immune rabbits (Oryctolagus cuniculus) infested with fleas (Spilopsyllus cuniculi Dale) and exposed to myxoma virus. (3/59)

Kittens with maternal antibodies to myxoma virus, the offspring of rabbits which had recovered from myxomatosis, were exposed to fleas contaminated with myxoma virus and/or contact with infected rabbits from birth. All kittens died or became infected before 8 weeks of age. When compared with adult animals similarly infected the kittens showed no advantage in terms of survival time or recovery rate attributable to maternal antibodies. Flea transmission of virus was found more effective than contact transmissions.  (+info)

Role of the C-terminal RDEL motif of the myxoma virus M-T4 protein in terms of apoptosis regulation and viral pathogenesis. (4/59)

The purpose of this study was to investigate the significance of the C-terminal RDEL motif of the myxoma virus M-T4 protein in terms of apoptosis regulation and role in viral virulence. To accomplish this, a recombinant myxoma virus was created in which the C-terminal RDEL motif of M-T4 was deleted and a selectable marker (Ecogpt) was inserted immediately downstream. We hypothesized that removal of the RDEL motif from M-T4 would alter the subcellular localization of the protein and provide insight into its antiapoptotic role. Surprisingly, removal of the RDEL motif from M-T4 did not affect localization of the protein within the endoplasmic reticulum (ER), but it did reduce the stability of the mutant protein. Pulse-chase immunoprecipitation and endoglycosidase H analysis coupled with confocal fluorescent light microscopy demonstrated that the M-T4 RDEL(-) mutant protein is retained in the ER like wildtype M-T4 and suggests that the C-terminal RDEL motif is not the sole determinant for M-T4 localization to the ER. Infection of cultured rabbit lymphocytes with the M-T4 RDEL(-) mutant virus results in an intermediate apoptosis phenotype compared with the wildtype and M-T4 knockout mutant viruses. A novel myxomatosis phenotype was observed in European rabbits when infected with the recombinant M-T4 RDEL(-) mutant virus. Rabbits infected with the M-T4 RDEL(-) virus on day 9 postinfection exhibited an exacerbated edematous and inflammatory response at secondary sites of infections, particularly the ears. Our results indicate that the C-terminal RDEL motif may not be solely responsible for retention of M-T4 to the ER and that M-T4 may have a dual function in protecting infected lymphocytes from apoptosis and in modulating the inflammatory response to virus infection.  (+info)

Myxomatosis: the virulence of field strains of myxoma virus in a population of wild rabbits (Oryctolagus cuniculus L.) with high resistance to myxomatosis. (5/59)

The virulence of field strains of myxoma virus is increasing in the Mallee region of Victoria where the resistance of the rabbit to myxomatosis is high. This suggests that the climax association will be a moderately severe disease.  (+info)

The differential transmissibility of Myxoma virus strains of differing virulence grades by the rabbit flea Spilopsyllus cuniculi (Dale). (6/59)

Laboratory studies showed that few rabbit fleas (Spilopsyllus cuniculi (Dale)) transmitted myxomatosis after removal from wild rabbits (Oryctolagus cuniculus (L) that had been infected for fever than 10-12 days, irrespective of the virulence of the myxoma virus strain involved. Rabbits infected with fully virulent (Grade I) strains died within 10-15 days and few fleas from these hosts became infective; averaging all the samples takem. 12% of the fleas were infective. Also, few fleas acquired infectivity on individual rabbits which covered from infection with attenuated strains; the mean was 8% infective. Rabbits which died between 17 and 44 days after infection had higher proportions of infective fleas at all sampling times; the mean was 42% infective. Male and female fleas transmitted virus with equal efficiency. For rabbits infected with any of the attenuated virus strains the mean percentage of infective fleas was inversely related to the survival time of the host. Rabbits infected with moderately attenuated strains (Grades IIIA and IIIB) had, on average, the highest proportion of infective fleas; hence such strains have a selective advantage and have become predominant under natural conditions in Britain. The changes that might occur if there is an increase in host resistance to myxomatosis are discussed.  (+info)

Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus. (7/59)

We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.  (+info)

Coevolution of host and virus: the pathogenesis of virulent and attenuated strains of myxoma virus in resistant and susceptible European rabbits. (8/59)

Myxoma virus was introduced into the European rabbit population of Australia in 1950. Although the virus was initially highly lethal in rabbits, there was rapid selection for less virulent strains of virus and innately resistant rabbits. To investigate the basis of resistance to myxoma virus, we have compared the pathogensis of the virulent strain of myxoma virus originally released into Australia and an attenuated, naturally derived field strain of myxoma virus. This was done in laboratory rabbits, which have not been selected for resistance, and in wild rabbits that have developed significant resistance. Wild rabbits were able to recover from infection with virus that was always lethal in laboratory rabbits. Laboratory rabbits were able to control and recover from infection with attenuated virus. This virus caused a trivial disease in wild rabbits. There was little difference between laboratory and wild rabbits in titers of either virulent or attenuated virus in the skin at the inoculation site. However, resistant wild rabbits had a 10- to 100-fold lower titer of virulent virus within the lymph node draining the inoculation site and controlled virus replication in tissues distal to the draining lymph node. Replication of virus in lymphocytes or fibroblasts cultured from wild and laboratory rabbits demonstrated that resistance was not due to altered cellular permissivity for replication. Neutralizing antibodies were present in both susceptible and resistant rabbits, suggesting that these have no significant role in resistance. We hypothesise that resistance is due to an enhanced innate immune response that allows the rabbit to mount an effective cellular immune response.  (+info)