Evidence for F-actin-dependent and -independent mechanisms involved in assembly and stability of the medial actomyosin ring in fission yeast. (1/5414)

Cell division in a number of eukaryotes, including the fission yeast Schizosaccharomyces pombe, is achieved through a medially placed actomyosin-based contractile ring. Although several components of the actomyosin ring have been identified, the mechanisms regulating ring assembly are still not understood. Here, we show by biochemical and mutational studies that the S.pombe actomyosin ring component Cdc4p is a light chain associated with Myo2p, a myosin II heavy chain. Localization of Myo2p to the medial ring depended on Cdc4p function, whereas localization of Cdc4p at the division site was independent of Myo2p. Interestingly, the actin-binding and motor domains of Myo2p are not required for its accumulation at the division site although the motor activity of Myo2p is essential for assembly of a normal actomyosin ring. The initial assembly of Myo2p and Cdc4p at the division site requires a functional F-actin cytoskeleton. Once established, however, F-actin is not required for the maintenance of Cdc4p and Myo2p medial rings, suggesting that the attachment of Cdc4p and Myo2p to the division site involves proteins other than actin itself.  (+info)

Regulation of chamber-specific gene expression in the developing heart by Irx4. (2/5414)

The vertebrate heart consists of two types of chambers, the atria and the ventricles, which differ in their contractile and electrophysiological properties. Little is known of the molecular mechanisms by which these chambers are specified during embryogenesis. Here a chicken iroquois-related homeobox gene, Irx4, was identified that has a ventricle-restricted expression pattern at all stages of heart development. Irx4 protein was shown to regulate the chamber-specific expression of myosin isoforms by activating the expression of the ventricle myosin heavy chain-1 (VMHC1) and suppressing the expression of the atrial myosin heavy chain-1 (AMHC1) in the ventricles. Thus, Irx4 may play a critical role in establishing chamber-specific gene expression in the developing heart.  (+info)

Association of a myosin immunoanalogue with cell envelopes of Aspergillus fumigatus conidia and its participation in swelling and germination. (3/5414)

A myosin immunoanalogue was identified in conidia of Aspergillus fumigatus by Western blotting, indirect immunofluorescence assay, and gold immunoelectron microscopy with two different antimyosin antibodies. The distribution pattern of this protein was followed during the early stages of germination. A single 180-kDa polypeptide, detected predominantly in a cell envelope extract, was found to cross-react with monoclonal and polyclonal antibodies raised against vertebrate muscle myosin. Immunoelectron microscopy permitted precise localization of this polypeptide, indicating that myosin analogue was mainly distributed along the plasma membrane of resting and swollen conidia. In germinating conidia, indirect immunofluorescence microscopy revealed myosin analogue at the periphery of germ tubes, whereas actin appeared as dispersed punctate structures in the cytoplasm that were more concentrated at the site of germ tube emergence. A myosin ATPase inhibitor, butanedione monoxime, greatly reduced swelling and blocked germination. In contrast, when conidia were treated with cytochalasin B, an inhibitor of actin polymerization, swelling was not affected and germination was only partially reduced. Butanedione monoxime-treated conidia showed accumulation of cytoplasmic vesicles and did not achieve cell wall reorganization, unlike swollen conidia. Collectively, these results suggest an essential role for this myosin analogue in the deposition of cell wall components during germination of A. fumigatus conidia and therefore in host tissue colonization.  (+info)

Studies on a nonpolysomal ribonucleoprotein coding for myosin heavy chains from chick embryonic muscles. (4/5414)

A messenger ribonucleoprotein (mRNP) particle containing the mRNA coding for the myosin heavy chain (MHC mRNA) has been isolated from the postpolysomal fraction of homogenates of 14-day-old chick embryonic muscles. The mRNP sediments in sucrose gradient as 120 S and has a characteristic buoyant density of 1.415 g/cm3, which corresponds to an RNA:protein ratio of 1:3.8. The RNA isolated from the 120 S particle behaved like authentic MHC mRNA purified from chick embryonic muscles with respect to electrophoretic mobility and ability to program the synthesis of myosin heavy chain in a rabbit reticulocyte lysate system as judged by multi-step co-purification of the in vitro products with chick embryonic leg muscle myosin added as carrier. The RNA obtained from the 120 S particle was as effective as purified MHC mRNA in stimulating the synthesis of the complete myosin heavy chains in rabbit reticulocyte lysate under conditions where non-muscle mRNAs had no such effect. Analysis of the protein moieties of the 120 S particle by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows the presence of seven distinct polypeptides with apparent molecular weights of 44,000, 49,000, 53,000, 81,000, 83,000, and 98,000, whereas typical ribosomal proteins are absent. These results indicate that the 120 S particles are distinct cellular entities unrelated to ribosomes or initiation complexes. The presence of muscle-specific mRNAs as cytoplasmic mRNPs suggests that these particles may be involved in translational control during myogenesis in embryonic muscles.  (+info)

Myosin II-independent F-actin flow contributes to cell locomotion in dictyostelium. (5/5414)

While the treadmilling and retrograde flow of F-actin are believed to be responsible for the protrusion of leading edges, little is known about the mechanism that brings the posterior cell body forward. To elucidate the mechanism for global cell locomotion, we examined the organizational changes of filamentous (F-) actin in live Dictyostelium discoideum. We labeled F-actin with a trace amount of fluorescent phalloidin and analyzed its dynamics in nearly two-dimensional cells by using a sensitive, high-resolution charge-coupled device. We optically resolved a cyclic mode of tightening and loosening of fibrous cortical F-actin and quantitated its flow by measuring temporal and spatial intensity changes. The rate of F-actin flow was evaluated with respect to migration velocity and morphometric changes. In migrating monopodial cells, the cortical F-actin encircling the posterior cell body gradually accumulated into the tail end at a speed of 0.35 microm/minute. We show qualitatively and quantitatively that the F-actin flow is closely associated with cell migration. Similarly, in dividing cells, the cortical F-actin accumulated into the cleavage furrow. Although five times slower than the wild type, the F-actin also flows rearward in migrating mhcA- cells demonstrating that myosin II ('conventional' myosin) is not absolutely required for the observed dynamics of F-actin. Yet consistent with the reported transportation of ConA-beads, the direction of observed F-actin flow in Dictyostelium is conceptually opposite from a barbed-end binding to the plasma membrane. This study suggests that the posterior end of the cell has a unique motif that tugs the cortical actin layer rearward by means of a mechanism independent from myosin II; this mechanism may be also involved in cleavage furrow formation.  (+info)

(CTG)n repeats markedly inhibit differentiation of the C2C12 myoblast cell line: implications for congenital myotonic dystrophy. (6/5414)

Although the mutation for myotonic dystrophy has been identified as a (CTG)n repeat expansion located in the 3'-untranslated region of a gene located on chromosome 19, the mechanism of disease pathogenesis is not understood. The objective of this study was to assess the effect of (CTG)n repeats on the differentiation of myoblasts in cell culture. We report here that C2C12 myoblast cell lines permanently transfected with plasmid expressing 500 bases long CTG repeat sequences, exhibited a drastic reduction in their ability to fuse and differentiate into myotubes. The percentage of cells fused into myotubes in C2 C12 cells (53.4+/-4.4%) was strikingly different from those in the two CTG repeat carrying clones (1.8+/-0.4% and 3.3+/-0. 7%). Control C2C12 cells permanently transfected with vector alone did not show such an effect. This finding may have important implications in understanding the pathogenesis of congenital myotonic dystrophy.  (+info)

Activation of myosin phosphatase targeting subunit by mitosis-specific phosphorylation. (7/5414)

It has been demonstrated previously that during mitosis the sites of myosin phosphorylation are switched between the inhibitory sites, Ser 1/2, and the activation sites, Ser 19/Thr 18 (Yamakita, Y., S. Yamashiro, and F. Matsumura. 1994. J. Cell Biol. 124:129- 137; Satterwhite, L.L., M.J. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), suggesting a regulatory role of myosin phosphorylation in cell division. To explore the function of myosin phosphatase in cell division, the possibility that myosin phosphatase activity may be altered during cell division was examined. We have found that the myosin phosphatase targeting subunit (MYPT) undergoes mitosis-specific phosphorylation and that the phosphorylation is reversed during cytokinesis. MYPT phosphorylated either in vivo or in vitro in the mitosis-specific way showed higher binding to myosin II (two- to threefold) compared to MYPT from cells in interphase. Furthermore, the activity of myosin phosphatase was increased more than twice and it is suggested this reflected the increased affinity of myosin binding. These results indicate the presence of a unique positive regulatory mechanism for myosin phosphatase in cell division. The activation of myosin phosphatase during mitosis would enhance dephosphorylation of the myosin regulatory light chain, thereby leading to the disassembly of stress fibers during prophase. The mitosis-specific effect of phosphorylation is lost on exit from mitosis, and the resultant increase in myosin phosphorylation may act as a signal to activate cytokinesis.  (+info)

Calculation of a Gap restoration in the membrane skeleton of the red blood cell: possible role for myosin II in local repair. (8/5414)

Human red blood cells contain all of the elements involved in the formation of nonmuscle actomyosin II complexes (V. M. Fowler. 1986. J. Cell. Biochem. 31:1-9; 1996. Curr. Opin. Cell Biol. 8:86-96). No clear function has yet been attributed to these complexes. Using a mathematical model for the structure of the red blood cell spectrin skeleton (M. J. Saxton. 1992. J. Theor. Biol. 155:517-536), we have explored a possible role for myosin II bipolar minifilaments in the restoration of the membrane skeleton, which may be locally damaged by major mechanical or chemical stress. We propose that the establishment of stable links between distant antiparallel actin protofilaments after a local myosin II activation may initiate the repair of the disrupted area. We show that it is possible to define conditions in which the calculated number of myosin II minifilaments bound to actin protofilaments is consistent with the estimated number of myosin II minifilaments present in the red blood cells. A clear restoration effect can be observed when more than 50% of the spectrin polymers of a defined area are disrupted. It corresponds to a significant increase in the spectrin density in the protein free region of the membrane. This may be involved in a more complex repair process of the red blood cell membrane, which includes the vesiculation of the bilayer and the compaction of the disassembled spectrin network.  (+info)