Interactions of Cdc4p, a myosin light chain, with IQ-domain containing proteins in Schizosaccharomyces pombe. (41/713)

The fission yeast Schizosaccharomyces pombe undergoes cell division through a medially placed actomyosin-based contractile ring. One of the key components of this ring is the F-actin based motor protein myosin II. The myosin II heavy chain Myo2p has two light-chain-binding domains, IQl and IQ2, which bind the essential light chain, Cdc4p, and the regulatory light chain, Rlc1p. Previously, we have reported the characterization of cells expressing Myo2p lacking the IQ2 domain that facilitates Myo2p interaction with Rlc1p. In this study, we have created and characterized S. pombe strains carrying precise deletions of IQ1 and the entire neck region encompassing the IQ1 and IQ2 domains. Surprisingly, we found that the entire neck region of Myo2p is dispensable for Myo2p function. Cells deleted for IQ1, IQ2 and the entire neck region of Myo2p do not display any obvious cytoskeletal abnormalities. Immunofluorescence studies indicated that Cdc4p localizes at the ring in early and late mitotic cells in a strain in which interactions of Cdc4p with both the myosin II heavy chains (Myo2p and Myp2p) are abolished. Unlike mutations in Rlc1p that are suppressed by a simultaneous deletion of its binding site on Myo2p, mutations in the essential light chain Cdc4p are not suppressed by deletion of its binding sites on Myo2p, suggesting that Cdc4p may have additional partners essential for cytokinesis. Consistent with this, we provide evidence that two other IQ-domain containing actomyosin ring proteins, Rng2p (an IQGAP-related protein) and Myo51p (a type V myosin heavy chain), physically interact with Cdc4p. We concluded that Cdc4p, a novel myosin light chain, interacts with multiple actomyosin ring components to effect cytokinesis.  (+info)

Identification of proteins involved in cytokinesis of Dictyostelium. (42/713)

Dictyostelium is one of the model systems of choice for studying the cytokinesis of animal-type cells. Two types of cytokinesis mutants have been used to identify proteins involved in the cytokinesis of Dictyostelium: (1) type I, the mutant cells grow on substrates to produce giant multinucleate cells; (2) type II, the mutant cells divide nearly normally on substrates, but are unable to divide at all and get highly multinucleate in suspension culture. These two mutant types might correspond to the myosin II-independent and myosin II-including cytokinesis mechanisms, respectively.  (+info)

On the mechanism of cleavage furrow ingression in Dictyostelium. (43/713)

The ability of Dictyostelium cells to divide without myosin II in a cell cycle-coupled manner has opened two questions about the mechanism of cleavage furrow ingression. First, are there other possible functions for myosin II in this process except for generating contraction of the furrow by a sliding filament mechanism? Second, what could be an alternative mechanical basis for the furrowing? Using aberrant changes of the cell shape and anomalous localization of the actin-binding protein cortexillin I during asymmetric cytokinesis in myosin II-deficient cells as clues, it is proposed that myosin II filaments act as a mechanical lens in cytokinesis. The mechanical lens serves to focus the forces that induce the furrowing to the center of the midzone, a cortical region where cortexillins are enriched in dividing cells. Additionally, continual disassembly of a filamentous actin meshwork at the midzone is a prerequisite for normal ingression of the cleavage furrow and a successful cytokinesis. If this process is interrupted, as it occurs in cells that lack cortexillins, an overassembly of filamentous actin at the midzone obstructs the normal cleavage. Disassembly of the crosslinked actin network can generate entropic contractile forces in the cortex, and may be considered as an alternative mechanism for driving ingression of the cleavage furrow. Instead of invoking different types of cytokinesis that operate under attached and unattached conditions in Dictyostelium, it is anticipated that these cells use a universal multifaceted mechanism to divide, which is only moderately sensitive to elimination of its constituent mechanical processes.  (+info)

Genetic approaches to dissect the mechanisms of two distinct pathways of cell cycle-coupled cytokinesis in Dictyostelium. (44/713)

Dictyostelium discoideum is a unique experimental organism which allows genetic analysis of the mechanism of cytokinesis of the animal type, and a number of mutations which affect cytokinesis in one way or other have been identified. Myosin II filaments accumulate in the equatorial region, and myosin II-null cells cannot divide in suspension, indicating that active, myosin II-dependent constriction of the cleavage furrow contributes to bisection of the cell. We refer to this method of cytokinesis as cytokinesis A. On substrates, however, myosin II-null cells divide efficiently in a cell cycle-coupled manner. This adhesion-dependent but myosin II-independent division method, which we termed cytokinesis B, is carried out by a pathway that is genetically distinct from that of cytokinesis A. Morphological analyses suggested that cytokinesis B is driven by radial traction forces generated along polar peripheries, which indirectly cause furrow ingression. Identification of two redundant pathways have allowed us to search genes involved in either pathway by mutagenizing cells which are already defective in one of the pathways. This approach enabled us to identify a number of novel cytokinesis-related genes, as well as to reclassify known genes as cytokinesis-related.  (+info)

The mechanism of cytokinesis: reconsideration and reconciliation. (45/713)

The widely held models of cytokinesis contend that signals for cleavage are transmitted by astral microtubules, and that such signals elicit the assembly and contraction of an equatorial band of actin-myosin II filaments. However, experiments during the past decade have painted an increasingly complex picture, including strong evidence for the involvement of chromosomal passenger proteins and interzonal microtubules, and the involvement of not only cortical contraction but also cytoskeletal disintegration. The purpose of this article is to consider alternative models that might better accommodate both old and new observations. It is proposed that chromosomal passenger proteins undergo dynamic associations at centromeres during metaphase and are recruited from the cytoplasm to both astral and interzonal microtubules during anaphase. In addition, cytokinesis may be driven by global inward contractions coupled to a localized collapse of the equatorial cortex.  (+info)

Diphosphorylated MRLC is required for organization of stress fibers in interphase cells and the contractile ring in dividing cells. (46/713)

Activity of nonmuscle myosin II is regulated by phosphorylation of its regulatory light chain (MRLC). Phosphoryration of MRLC at both Thr18 and Ser19 (diphosphorylation) results in higher MgATPase activity and in promotion of the assembly of myosin II filaments than does that of MRLC at Ser19 (monophosphorylation) in vitro. To determine the roles of the diphosphorylated MRLC in vivo, we transfected three kinds of MRLC mutants, unphosphorylated, monophosphorylated and diphosphorylated forms (MRLC2(T18AS19A), substitution of both Ser19 and Thr18 by Ala; MRLC2(T18AS19D), Ser19 by Asp and Thr18 by Ala; and MRLC2(T18DS19D), both Ser19 and Thr18 by Asp, respectively), into HeLa cells. Cells overexpressing the mutant MRLC2(T18DS19D) contained a larger number of actin filament bundles than did those overexpressing the mutant MRLC2(T18AS19D). Moreover, cells overexpressing the nonphosphorylatable mutant MRLC2(T18AS19A) showed a decrease in the number of actin filament bundles. Taken together, our data suggest that diphosphorylation of MRLC plays an important role in regulating actin filament assembly and reorganization in nonmuscle cells.  (+info)

Lamellipodial localization of Dictyostelium myosin heavy chain kinase A is mediated via F-actin binding by the coiled-coil domain. (47/713)

Myosin heavy chain kinase A (MHCK A) modulates myosin II filament assembly in the amoeba Dictyostelium discoideum. MHCK A localization in vivo is dynamically regulated during chemotaxis, phagocytosis, and other polarized cell motility events, with preferential recruitment into anterior filamentous actin (F-actin)-rich structures. The current work reveals that an amino-terminal segment of MHCK A, previously identified as forming a coiled-coil, mediates anterior localization. MHCK A co-sediments with F-actin, and deletion of the amino-terminal domain eliminated actin binding. These results indicate that the anterior localization of MHCK A is mediated via direct binding to F-actin, and reveal the presence of an actin-binding function not previously detected by primary sequence evaluation of the coiled-coil domain.  (+info)

Analysis of nucleotide binding to Dictyostelium myosin II motor domains containing a single tryptophan near the active site. (48/713)

Dictyostelium myosin II motor domain constructs containing a single tryptophan residue near the active sites were prepared in order to characterize the process of nucleotide binding. Tryptophan was introduced at positions 113 and 131, which correspond to those naturally present in vertebrate skeletal muscle myosin, as well as position 129 that is also close to the adenine binding site. Nucleotide (ATP and ADP) binding was accompanied by a large quench in protein fluorescence in the case of the tryptophans at 129 and 131 but a small enhancement for that at 113. None of these residues was sensitive to the subsequent open-closed transition that is coupled to hydrolysis (i.e. ADP and ATP induced similar fluorescence changes). The kinetics of the fluorescence change with the F129W mutant revealed at least a three-step nucleotide binding mechanism, together with formation of a weakly competitive off-line intermediate that may represent a nonproductive mode of nucleotide binding. Overall, we conclude that the local and global conformational changes in myosin IIs induced by nucleotide binding are similar in myosins from different species, but the sign and magnitude of the tryptophan fluorescence changes reflect nonconserved residues in the immediate vicinity of each tryptophan. The nucleotide binding process is at least three-step, involving conformational changes that are quite distinct from the open-closed transition sensed by the tryptophan Trp(501) in the relay loop.  (+info)