Transient kinetic analysis of the 130-kDa myosin I (MYR-1 gene product) from rat liver. A myosin I designed for maintenance of tension? (1/185)

The 130-kDa myosin I (MI(130)), product of the myr-1 gene, is one member of the mammalian class I myosins, a group of small, calmodulin-binding mechanochemical molecules of the myosin superfamily that translocate actin filaments. Roles for MI(130) are unknown. Our hypothesis is that, as with all myosins, MI(130) is designed for a particular function and hence possesses specific biochemical attributes. To test this hypothesis we have characterized the enzymatic properties of MI(130) using steady-state and stopped-flow kinetic analyses. Our results indicate that: (i) the Mg(2+)-ATPase activity is activated in proportion to actin concentration in the absence of Ca(2+); (ii) the ATP-induced dissociation of actin-MI(130) is much slower for MI(130) than has been observed for other myosins (-Ca(2+), second order rate constant of ATP binding, 1.7 x 10(4) M(-1) s(-1); maximal rate constant, 32 s(-1)); (iii) ADP binds to actin-MI(130) with an affinity of approximately 10 microM and competes with ATP-induced dissociation of actin-MI(130); the rate constant of ADP release from actin-MI(130) is 2 s(-1); (iv) the rates of the ATP-induced dissociation of actin-MI and ADP release are 2-3 times greater in the presence of CaCl(2), indicating a sensitivity of motor activity to Ca(2+); and (v) the affinity of MI(130) for actin (15 nM) is typical of that observed for other myosins. Together, these results indicate that although MI(130) shares some characteristics with other myosins, it is well adapted for maintenance of cortical tension.  (+info)

A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. (2/185)

Type I myosins are highly conserved actin-based molecular motors that localize to the actin-rich cortex and participate in motility functions such as endocytosis, polarized morphogenesis, and cell migration. The COOH-terminal tail of yeast myosin-I proteins, Myo3p and Myo5p, contains an Src homology domain 3 (SH3) followed by an acidic domain. The myosin-I SH3 domain interacted with both Bee1p and Vrp1p, yeast homologues of human WASP and WIP, adapter proteins that link actin assembly and signaling molecules. The myosin-I acidic domain interacted with Arp2/3 complex subunits, Arc40p and Arc19p, and showed both sequence similarity and genetic redundancy with the COOH-terminal acidic domain of Bee1p (Las17p), which controls Arp2/3-mediated actin nucleation. These findings suggest that myosin-I proteins may participate in a diverse set of motility functions through a role in actin assembly.  (+info)

Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. (3/185)

Dictyostelium discoideum myosin Ik (MyoK) is a novel type of myosin distinguished by a remarkable architecture. MyoK is related to class I myosins but lacks a cargo-binding tail domain and carries an insertion in a surface loop suggested to modulate motor velocity. This insertion shows similarity to a secondary actin-binding site present in the tail of some class I myosins, and indeed a GST-loop construct binds actin. Probably as a consequence, binding of MyoK to actin was not only ATP- but also salt-dependent. Moreover, as both binding sites reside within its motor domain and carry potential sites of regulation, MyoK might represent a new form of actin crosslinker. MyoK was distributed in the cytoplasm with a significant enrichment in dynamic regions of the cortex. Absence of MyoK resulted in a drop of cortical tension whereas overexpression led to significantly increased tension. Absence and overexpression of MyoK dramatically affected the cortical actin cytoskeleton and resulted in reduced initial rates of phagocytosis. Cells lacking MyoK showed excessive ruffling, mostly in the form of large lamellipodia, accompanied by a thicker basal actin cortex. At early stages of development, aggregation of myoK null cells was slowed due to reduced motility. Altogether, the data indicate a distinctive role for MyoK in the maintenance and dynamics of the cell cortex.  (+info)

The mouse neurological mutant flailer expresses a novel hybrid gene derived by exon shuffling between Gnb5 and Myo5a. (4/185)

Exon shuffling is thought to be an important mechanism for evolution of new genes. Here we show that the mouse neurological mutation flailer (flr) expresses a novel gene that combines the promoter and first two exons of guanine nucleotide binding protein beta 5 (Gnb5) with the C-terminal exons of the closely linked Myosin 5A (MyoVA) gene (Myo5a). The flailer protein, which is expressed predominantly in brain, contains the N-terminal 83 amino acids of Gnb5 fused in-frame with the C-terminal 711 amino acids of MyoVA, including the globular tail domain that binds organelles for intracellular transport. Biochemical and genetic studies indicate that the flailer protein competes with wild-type MyoVA in vivo, preventing the localization of smooth endoplasmic reticulum vesicles in the dendritic spines of cerebellar Purkinje cells. The flailer protein thus has a dominant-negative mechanism of action with a recessive mode of inheritance due to the dependence of competitive binding on the ratio between mutant and wild-type proteins. The chromosomal arrangement of Myo5a upstream of Gnb5 is consistent with non-homologous recombination as the mutational mechanism. To our knowledge, flailer is the first example of a mammalian mutation caused by germ line exon shuffling between unrelated genes.  (+info)

Truncation of a mammalian myosin I results in loss of Ca2+-sensitive motility. (5/185)

MYR-1, a mammalian class I myosin, consisting of a heavy chain and 4-6 associated calmodulins, is represented by the 130-kDa myosin I (or MI(130)) from rat liver. MI(130) translocates actin filaments in vitro in a Ca(2+)-regulated manner. A decrease in motility observed at higher Ca(2+) concentrations has been attributed to calmodulin dissociation. To investigate mammalian myosin I regulation, we have coexpressed in baculovirus calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic "motor" domain and the first calmodulin-binding IQ domain of rat myr-1; we refer to this truncated molecule here as MI(1IQ). Association of calmodulin to MI(1IQ) is Ca(2+)-insensitive. MI(1IQ) translocates actin filaments in vitro at a rate resembling MI(130), but unlike MI(130), does not exhibit sensitivity to 0.1-100 micrometer Ca(2+). In addition to demonstrating successful expression of a functional truncated mammalian myosin I in vitro, these results indicate that: 1) Ca(2+)-induced calmodulin dissociation from MI(130) in the presence of actin is not from the first IQ domain, 2) velocity is not affected by the length of the IQ region, and 3) the Ca(2+) sensitivity of actin translocation exhibited by MI(130) involves 1 or more of the other 5 IQ domains and/or the carboxyl tail.  (+info)

Kinetic analyses of a truncated mammalian myosin I suggest a novel isomerization event preceding nucleotide binding. (6/185)

MI(1IQ) is a complex of calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic motor domain and the first of 6 calmodulin-binding IQ domains of the mammalian myosin I gene, rat myr-1 (130-kDa myosin I or MI(130)). We have determined the transient kinetic parameters that dictate the ATP hydrolysis cycle of mammalian myosin I by examining the properties of MI(1IQ). Transient kinetics reveal that the affinity of MI(1IQ) for actin is 12 nm. The ATP-induced dissociation of actin-MI(1IQ) is biphasic. The fast phase is dependent upon [ATP], whereas the slow phase is not; both phases show a Ca(2+) sensitivity. The fast phase is eliminated by the addition of ADP, 10 micrometer being required for half-saturation of the effect in the presence of Ca(2+) and 3 micrometer ADP in the absence of Ca(2+). The slow phase shares the same rate constant as ADP release (8 and 3 s(-)(1) in the presence and absence of Ca(2+), respectively), but cannot be eliminated by decreasing [ADP]. We interpret these results to suggest that actin-myosin I exists in two forms in equilibrium, one of which is unable to bind nucleotide. These results also indicate that the absence of the COOH-terminal 5 calmodulin binding domains of myr-1 do not influence the kinetic properties of MI(130) and that the Ca(2+) sensitivity of the kinetics are in all likelihood due to Ca(2+) binding to the first IQ domain.  (+info)

An intact SH3 domain is required for myosin I-induced actin polymerization. (7/185)

The yeast type I myosins (MYO3 and MYO5) are involved in endocytosis and in the polarization of the actin cytoskeleton. The tail of these proteins contains a Tail Homology 2 (TH2) domain that constitutes a putative actin-binding site. Because of the important mechanistic implications of a second ATP-independent actin-binding site, we analyzed its functional relevance in vivo. Even though the myosin tail interacts with actin, and this interaction seems functionally important, deletion of a major portion of the TH2 domain did not abolish interaction. In contrast, we found that the SH3 domain of Myo5p significantly contributes to this interaction, implicating other proteins. We found that Vrp1p, the yeast homolog of WIP [Wiskott-Aldrich syndrome protein (WASP)-interacting protein], seems necessary to sustain the Myo5p tail-F-actin interaction. Consistent with recent results implicating the yeast type I myosins in regulating actin polymerization in vivo, we demonstrate that the C-terminal domain of Myo5p is able to induce cytosol-dependent actin polymerization in vitro, and that this activity requires both an intact Myo5p SH3 domain and Vrp1p.  (+info)

Fission yeast myosin-I, Myo1p, stimulates actin assembly by Arp2/3 complex and shares functions with WASp. (8/185)

Fission yeast myo1(+) encodes a myosin-I with all three tail homology domains (TH1, 2, 3) found in typical long-tailed myosin-Is. Myo1p tail also contains a COOH-terminal acidic region similar to the A-domain of WASp/Scar proteins and other fungal myosin-Is. Our analysis shows that Myo1p and Wsp1p, the fission yeast WASp-like protein, share functions and cooperate in controlling actin assembly. First, Myo1p localizes to cortical patches enriched at tips of growing cells and at sites of cell division. Myo1p patches partially colocalize with actin patches and are dependent on an intact actin cytoskeleton. Second, although deletion of myo1(+) is not lethal, Deltamyo1 cells have actin cytoskeletal defects, including loss of polarized cell growth, delocalized actin patches, and mating defects. Third, additional disruption of wsp1(+) is synthetically lethal, suggesting that these genes may share functions. In mapping the domains of Myo1p tail that share function with Wsp1p, we discovered that a Myo1p construct with just the head and TH1 domains is sufficient for cortical localization and to rescue all Deltamyo1 defects. However, it fails to rescue the Deltamyo1 Deltawsp1 lethality. Additional tail domains, TH2 and TH3, are required to complement the double mutant. Fourth, we show that a recombinant Myo1p tail binds to Arp2/3 complex and activates its actin nucleation activity.  (+info)