Properties of filament-bound myosin light chain kinase. (1/994)

Myosin light chain kinase binds to actin-containing filaments from cells with a greater affinity than to F-actin. However, it is not known if this binding in cells is regulated by Ca2+/calmodulin as it is with F-actin. Therefore, the binding properties of the kinase to stress fibers were examined in smooth muscle-derived A7r5 cells. Full-length myosin light chain kinase or a truncation mutant lacking residues 2-142 was expressed as chimeras containing green fluorescent protein at the C terminus. In intact cells, the full-length kinase bound to stress fibers, whereas the truncated kinase showed diffuse fluorescence in the cytoplasm. After permeabilization with saponin, the fluorescence from the truncated kinase disappeared, whereas the fluorescence of the full-length kinase was retained on stress fibers. Measurements of fluorescence intensities and fluorescence recovery after photobleaching of the full-length myosin light chain kinase in saponin-permeable cells showed that Ca2+/calmodulin did not dissociate the kinase from these filaments. However, the filament-bound kinase was sufficient for Ca2+-dependent phosphorylation of myosin regulatory light chain and contraction of stress fibers. Thus, dissociation of myosin light chain kinase from actin-containing thin filaments is not necessary for phosphorylation of myosin light chain in thick filaments. We note that the distance between the N terminus and the catalytic core of the kinase is sufficient to span the distance between thin and thick filaments.  (+info)

Inhibition of the ATP-dependent interaction of actin and myosin by the catalytic domain of the myosin light chain kinase of smooth muscle: possible involvement in smooth muscle relaxation. (2/994)

Myosin light chain kinase (MLCK) phosphorylates the light chain of smooth muscle myosin enabling its interaction with actin. This interaction initiates smooth muscle contraction. MLCK has another role that is not attributable to its phosphorylating activity, i.e., it inhibits the ATP-dependent movement of actin filaments on a glass surface coated with phosphorylated myosin. To analyze the inhibitory effect of MLCK, the catalytic domain of MLCK was obtained with or without the regulatory sequence adjacent to the C-terminal of the domain, and the inhibitory effect of the domain was examined by the movement of actin filaments. All the domains work so as to inhibit actin filament movement whether or not the regulatory sequence is included. When the domain includes the regulatory sequence, calmodulin in the presence of calcium abolishes the inhibition. Since the phosphorylation reaction is not involved in regulating the movement by MLCK, and a catalytic fragment that shows no kinase activity also inhibits movement, the kinase activity is not related to inhibition. Higher concentrations of MLCK inhibit the binding of actin filaments to myosin-coated surfaces as well as their movement. We discuss the dual roles of the domain, the phosphorylation of myosin that allows myosin to cross-bridge with actin and a novel function that breaks cross-bridging.  (+info)

Inhibition of myosin light chain kinase by p21-activated kinase. (3/994)

p21-activated kinases (PAKs) are implicated in the cytoskeletal changes induced by the Rho family of guanosine triphosphatases. Cytoskeletal dynamics are primarily modulated by interactions of actin and myosin II that are regulated by myosin light chain kinase (MLCK)-mediated phosphorylation of the regulatory myosin light chain (MLC). p21-activated kinase 1 (PAK1) phosphorylates MLCK, resulting in decreased MLCK activity. MLCK activity and MLC phosphorylation were decreased, and cell spreading was inhibited in baby hamster kidney-21 and HeLa cells expressing constitutively active PAK1. These data indicate that MLCK is a target for PAKs and that PAKs may regulate cytoskeletal dynamics by decreasing MLCK activity and MLC phosphorylation.  (+info)

Ethanol modulation of intestinal epithelial tight junction barrier. (4/994)

Previous studies have shown that high concentrations of ethanol (>/=40%) cause functional damage of the gastrointestinal epithelial barrier by direct cytotoxic effect on the epithelial cells. The effects of lower noncytotoxic doses of ethanol on epithelial barrier function are unknown. A major function of gastrointestinal epithelial cells is to provide a barrier against the hostile substances in the gastrointestinal lumen. The apicolaterally located tight junctions (TJs) form a paracellular seal between the lateral membranes of adjacent cells and act as a paracellular barrier. In this study, we investigated the effects of lower doses of ethanol on intestinal epithelial TJ barrier function using filter-grown Caco-2 intestinal epithelial monolayers. The Caco-2 TJ barrier function was assessed by measuring epithelial resistance or paracellular permeability of the filter-grown monolayers. Ethanol (0, 1, 2.5, 5, 7.5, and 10%) produced a dose-related drop in Caco-2 epithelial resistance and increase in paracellular permeability. Ethanol also produced a progressive disruption of TJ protein (ZO-1) with separation of ZO-1 proteins from the cellular junctions and formation of large gaps between the adjacent cells. Ethanol, at the doses used (+info)

Ca2+-independent phosphorylation of myosin in rat caudal artery and chicken gizzard myofilaments. (5/994)

1. Smooth muscle contraction is activated primarily by the Ca2+-calmodulin (CaM)-dependent phosphorylation of the 20 kDa light chains (LC20) of myosin. Activation can also occur in some instances without a change in intracellular free [Ca2+] or indeed in a Ca2+-independent manner. These signalling pathways often involve inhibition of myosin light chain phosphatase and unmasking of basal kinase activity leading to LC20 phosphorylation and contraction. 2. We have used demembranated rat caudal arterial smooth muscle strips and isolated chicken gizzard myofilaments in conjunction with the phosphatase inhibitor microcystin-LR to investigate the mechanism of Ca2+-independent phosphorylation of LC20 and contraction. 3. Treatment of Triton X-100-demembranated rat caudal arterial smooth muscle strips with microcystin at pCa 9 triggered a concentration-dependent contraction that was slower than that induced by pCa 4.5 or 6 but reached comparable steady-state levels of tension. 4. This Ca2+-independent, microcystin-induced contraction correlated with phosphorylation of LC20 at serine-19 and threonine-18. 5. Whereas Ca2+-dependent LC20 phosphorylation and contraction were inhibited by a synthetic peptide (AV25) based on the autoinhibitory domain of myosin light chain kinase (MLCK), Ca2+-independent, microcystin-induced LC20 phosphorylation and contraction were resistant to AV25. 6. Ca2+-independent LC20 kinase activity was also detected in chicken gizzard smooth muscle myofilaments and catalysed phosphorylation of endogenous myosin LC20 at serine-19 and/or threonine-18. This is in contrast to MLCK which phosphorylates threonine-18 only after prior phosphorylation of serine-19. 7. Gizzard Ca2+-independent LC20 kinase could be separated from MLCK by differential extraction from myofilaments and by CaM affinity chromatography. Its activity was resistant to AV25. 8. We conclude that inhibition of smooth muscle myosin light chain phosphatase (MLCP) unmasks the activity of a Ca2+-independent LC20 kinase associated with the myofilaments and distinct from MLCK. This kinase, therefore, probably plays a role in Ca2+ sensitization and Ca2+-independent contraction of smooth muscle in response to stimuli that act via Ca2+-independent pathways, leading to inhibition of MLCP.  (+info)

Substitution of the methionine residues of calmodulin with the unnatural amino acid analogs ethionine and norleucine: biochemical and spectroscopic studies. (6/994)

Calmodulin (CaM) is a 148-residue regulatory calcium-binding protein that activates a wide range of target proteins and enzymes. Calcium-saturated CaM has a bilobal structure, and each domain has an exposed hydrophobic surface region where target proteins are bound. These two "active sites" of calmodulin are remarkably rich in Met residues. Here we have biosynthetically substituted (up to 90% incorporation) the unnatural amino acids ethionine (Eth) and norleucine (Nle) for the nine Met residues of CaM. The substituted proteins bind in a calcium-dependent manner to hydrophobic matrices and a synthetic peptide, encompassing the CaM-binding domain of myosin light-chain kinase (MLCK). Infrared and circular dichroism spectroscopy show that there are essentially no changes in the secondary structure of these proteins compared to wild-type CaM (WT-CaM). One- and two-dimensional NMR studies of the Eth-CaM and Nle-CaM proteins reveal that, while the core of the proteins is relatively unaffected by the substitutions, the two hydrophobic interaction surfaces adjust to accommodate the Eth and Nle residues. Enzyme activation studies with MLCK show that Eth-CaM and Nle-CaM activate the enzyme to 90% of its maximal activity, with little changes in dissociation constant. For calcineurin only 50% activation was obtained, and the K(D) for Nle-CaM also increased 3.5-fold compared with WT-CaM. These data show that the "active site" Met residues of CaM play a distinct role in the activation of different target enzymes, in agreement with site-directed mutagenesis studies of the Met residues of CaM.  (+info)

Dephosphorylation of distinct sites on the 20 kDa myosin light chain by smooth muscle myosin phosphatase. (7/994)

The dephosphorylation of the myosin light chain kinase and protein kinase C sites on the 20 kDa myosin light chain by myosin phosphatase was investigated. The myosin phosphatase holoenzyme and catalytic subunit, dephosphorylated Ser-19, Thr-18 and Thr-9, but not Ser-1/Ser-2. The role of noncatalytic subunits in myosin phosphatase was to activate the phosphatase activity. For Ser-19 and Thr-18, this was due to a decrease in Km and an increase in k(cat) and for Thr-9 to a decrease in Km. Thus, the distinction between the various sites is a property of the catalytic subunit.  (+info)

Characterization of the myosin light chain kinase from smooth muscle as an actin-binding protein that assembles actin filaments in vitro. (8/994)

In addition to its kinase activity, myosin light chain kinase has an actin-binding activity, which results in bundling of actin filaments [Hayakawa et al., Biochem. Biophys. Res. Commun. 199, 786-791, 1994]. There are two actin-binding sites on the kinase: calcium- and calmodulin-sensitive and insensitive sites [Ye et al., J. Biol. Chem. 272, 32182-32189, 1997]. The calcium/calmodulin-sensitive, actin-binding site is located at Asp2-Pro41 and the insensitive site is at Ser138-Met213. The cyanogen bromide fragment, consisting of Asp2-Met213, is furnished with both sites and is the actin-binding core of myosin light chain kinase. Cross-linking between the two sites assembles actin filaments into bundles. Breaking of actin-binding at the calcium/calmodulin-sensitive site by calcium/calmodulin disassembles the bundles.  (+info)