In vivo regulation of beta-MHC gene in rodent heart: role of T3 and evidence for an upstream enhancer. (25/2643)

Cardiac beta-myosin heavy chain (beta-MHC) gene expression is mainly regulated through transcriptional processes. Although these results are based primarily on in vitro cell culture models, relatively little information is available concerning the interaction of key regulatory factors thought to modulate MHC expression in the intact rodent heart. Using a direct gene transfer approach, we studied the in vivo transcriptional activity of different-length beta-MHC promoter fragments in normal control and in altered thyroid states. The test beta-MHC promoter was fused to a firefly luciferase reporter gene, whereas the control alpha-MHC promoter was fused to the Renilla luciferase reporter gene and was used to account for variations in transfection efficiency. Absolute reporter gene activities showed that beta- and alpha-MHC genes were individually and reciprocally regulated by thyroid hormone. The beta-to-alpha ratios of reporter gene expression demonstrated an almost threefold larger beta-MHC gene expression in the longest than in the shorter promoter fragments in normal control animals, implying the existence of an upstream enhancer. A mutation in the putative thyroid response element of the -408-bp beta-MHC promoter construct caused transcriptional activity to drop to null. When studied in the -3, 500-bp beta-MHC promoter, construct activity was reduced ( approximately 100-fold) while thyroid hormone responsiveness was retained. These findings suggest that, even though the bulk of the thyroid hormone responsiveness of the gene is contained within the first 215 bp of the beta-MHC promoter sequence, the exact mechanism of triiodothyronine (T3) action remains to be elucidated.  (+info)

Generation of humanized mice susceptible to peptide-induced inflammatory heart disease. (26/2643)

BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of sudden cardiac death. In certain mouse major histocompatibility complex (MHC) backgrounds, myocarditis and inflammatory cardiomyopathy can be triggered by immunization with heart muscle-specific proteins. Similarly, chronic heart disease in humans has been linked to certain HLA alleles, such as HLA-DQ6. However, there is no experimental evidence showing that human MHC class II molecules and peptides derived from human proteins are involved in the pathogenesis of myocarditis and DCM. METHODS AND RESULTS: We generated double CD4- and CD8-deficient mice transgenic for human CD4 (hCD4) and human HLA-DQ6 to specifically reconstitute the human CD4/DQ6 arm of the immune system in mice. Transgenic hCD4 and HLA-DQ6 expression rendered genetically resistant C57BL/6 mice susceptible to the induction of autoimmune myocarditis induced by immunization with cardiac myosin. Moreover, we identified heart-specific peptides derived from both mouse and human alpha-myosin heavy chains capable of inducing inflammatory heart disease in hCD4 and HLA-DQ6 double transgenic mice but not in hCD4 single transgenic littermates. The autoimmune inflammatory heart disease induced by the human heart muscle-specific peptide in hCD4 and HLA-DQ6 double transgenic mice shared functional and phenotypic features with the disease occurring in disease-susceptible nontransgenic mice. CONCLUSIONS: Our data provide the first genetic and functional evidence that human MHC class II molecules and a human alpha-myosin heavy chain-derived peptide can cause inflammatory heart disease and suggest that human inflammatory cardiomyopathy can be caused by organ-specific autoimmunity. The humanized mice generated in this study will be an ideal animal model to further elucidate the pathogenesis of inflammatory heart disease and facilitate the development of rational treatment strategies.  (+info)

Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. (27/2643)

1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact that impaired force production had on absolute peak power.  (+info)

Chronic ETA receptor blockade attenuates cardiac hypertrophy independently of blood pressure effects in renovascular hypertensive rats. (28/2643)

In isolated cardiac myocytes, the direct effects of angiotensin II on cellular growth and gene expression were shown to be mediated by endothelin via the endothelin subtype A (ETA) receptor. To determine whether this pathway is also involved in the cardiovascular adaptations to a chronic activation of the renin-angiotensin system in vivo, the effects of a selective ETA receptor antagonist (LU 127043) were investigated in adult rats with renal artery stenosis. Four groups of rats (n=107) were studied over a period of 10 days after surgery: (1) sham-operated animals with saline administration, (2) rats subjected to left renal artery clipping with saline administration, (3) sham-operated rats with LU 127043 administration, and (4) rats subjected to left renal artery clipping with LU 127043 administration. LU 127043 (50 mg/kg) or saline was given by gavage twice daily starting 1 day before the operation. In clipped rats with saline administration, plasma renin activity, the ratio of left ventricular weight to body weight, and mRNAs for beta-myosin heavy chain and atrial natriuretic peptide were significantly elevated as early as 2 days after surgery. Blood pressure started to rise on the third postoperative day and attained a steady state hypertensive level by day 6. Blockade of ETA receptors had no effects on plasma renin activity or the time course of hypertension in clipped animals but completely prevented left ventricular hypertrophy and the re-expression of the beta-myosin heavy chain and atrial natriuretic peptide genes on day 2. While the expressions of the beta-myosin heavy chain and atrial natriuretic peptide genes were not different from saline-treated, clipped animals after day 4, the development of left ventricular hypertrophy remained markedly blunted (-50%) during ETA receptor blockade until day 10. These results show that a continuous blockade of ETA receptors significantly attenuates the development of left ventricular hypertrophy and, more transiently, fetal gene expression in the early phase of renovascular hypertension. Since neither blood pressure nor the increase in plasma renin activity was significantly altered by ETA receptor blockade, the inhibitory influences of the ETA receptor antagonist on left ventricular hypertrophy and gene expression were mediated most likely through a direct blockade of myocardial ETA receptors.  (+info)

Effects of candesartan and cilazapril on rats with myocardial infarction assessed by echocardiography. (29/2643)

The purpose of this study was to compare the angiotensin II type 1 receptor antagonist candesartan cilexitil (candesartan) and the angiotensin-converting enzyme inhibitor cilazapril on cardiac function, assessed by Doppler echocardiography and cardiac gene expression associated with cardiac remodeling, in rats with myocardial infarction. Candesartan or cilazapril was administered after myocardial infarction. At 1 and 4 weeks after myocardial infarction, cardiac function and mRNA expression in noninfarcted myocardium were analyzed. Candesartan and cilazapril equally prevented increases in hypertrophy in noninfarcted myocardium, left ventricular dilatation, and ejection fraction at 4 weeks. The E-wave/A-wave velocity ratio and the rate of E-wave deceleration, measures of diastolic function, increased to 9.2+/-0.6 and 26.3+/-2. 6 m/s2 at 1 week after myocardial infarction. Candesartan and cilazapril, administered at a dose of 1 mg/kg per day, prevented increases in E-wave/A-wave velocity ratio and E-wave deceleration at 1 and 4 weeks. Candesartan and cilazapril significantly suppressed increased mRNA expression of beta-myosin heavy chain, alpha-skeletal actin, and atrial natriuretic peptide in noninfarcted ventricle at 1 and 4 weeks and expression of collagen I and III at 4 weeks to a similar extent. When given at a dose of 10 mg/kg per day, both candesartan and cilazapril prevented cardiac dysfunction and gene expression to the same extent as when given at 1 mg/kg per day. In conclusion, Doppler echocardiography showed that candesartan and cilazapril equally improved systolic and diastolic function and that ventricular remodeling accompanied modulation of cardiac gene expression.  (+info)

Angiotensin II type 1 receptor antagonist downregulates nonmuscle myosin heavy chains in spontaneously hypertensive rat aorta. (30/2643)

The aim of this study was to clarify the differences between the angiotensin II type 1 (AT1) receptor antagonist and the angiotensin-converting enzyme (ACE) inhibitor on smooth muscle and nonmuscle myosin heavy chain isoforms in aortic smooth muscle cells of Wistar-Kyoto rats and spontaneously hypertensive rats. All 4 myosin heavy chain isoforms are heterogeneously expressed in the smooth muscle cells of the aortic tunica media in 20-week-old rats, and the contractile-type myosin heavy chains are highly expressed in smooth muscle cells of the aortic tunica media compared with the synthetic-type myosin heavy chains. Both the AT1 receptor antagonist and the ACE inhibitor had the same effects on hemodynamics, smooth muscle cell hypertrophy and proliferation, fibrosis, and vascular remodeling in spontaneously hypertensive rats. However, the AT1 receptor antagonist had a more potent effect on the downregulation of the synthetic-type myosin heavy chains than the ACE inhibitor in spontaneously hypertensive rat aortic tunica media. In contrast, these effects of the AT1 receptor antagonist and the ACE inhibitor on hemodynamics, morphology, fibrosis, and expression of myosin heavy chain isoforms in smooth muscle cells of the aortic tunica media were not observed in Wistar-Kyoto rats. Thus, within 6 weeks, the AT1 receptor antagonist might modulate the cellular composition of myosin heavy chain isoforms in smooth muscle cells more efficiently than the ACE inhibitor, without morphological changes in the spontaneously hypertensive rat aorta.  (+info)

Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. (31/2643)

The Rho3 protein plays a critical role in the budding yeast Saccharomyces cerevisiae by directing proper cell growth. Rho3 appears to influence cell growth by regulating polarized secretion and the actin cytoskeleton, since rho3 mutants exhibit large rounded cells with an aberrant actin cytoskeleton. To gain insights into how Rho3 influences these events, we have carried out a yeast two-hybrid screen using an S. cerevisiae cDNA library to identify proteins interacting with Rho3. Two proteins, Exo70 and Myo2, were identified in this screen. Interactions with these two proteins are greatly reduced or abolished when mutations are introduced into the Rho3 effector domain. In addition, a type of mutation known to produce dominant negative mutants of Rho proteins abolished the interaction with both of these proteins. In contrast, Rho3 did not interact with protein kinase C (Pkc1), an effector of another Rho family protein, Rho1, nor did Rho1 interact with Exo70 or Myo2. Rho3 did interact with Bni1, another effector of Rho1, but less efficiently than with Rho1. The interaction between Rho3 and Exo70 and between Rho3 and Myo2 was also demonstrated with purified proteins. The interaction between Exo70 and Rho3 in vitro was dependent on the presence of GTP, since Rho3 complexed with guanosine 5'-O-(3-thiotriphosphate) interacted more efficiently with Exo70 than Rho3 complexed with guanosine 5'-O-(3-thiodiphosphate). Overlapping subcellular localization of the Rho3 and Exo70 proteins was demonstrated by indirect immunofluorescence. In addition, patterns of localization of both Exo70 and Rho3 were altered when a dominant active allele of RHO3, RHO3(E129,A131), which causes a morphological abnormality, was expressed. These results provide a direct molecular basis for the action of Rho3 on exocytosis and the actin cytoskeleton.  (+info)

Association of the class V myosin Myo4p with a localised messenger RNA in budding yeast depends on She proteins. (32/2643)

Asymmetric distribution of messenger RNAs is a widespread mechanism to localize synthesis of specific protein to distinct sites in the cell. Although not proven yet there is considerable evidence that mRNA localisation is an active process that depends on the activity of cytoskeletal motor proteins. To date, the only motor protein with a specific role in mRNA localisation is the budding yeast type V myosin Myo4p. Myo4p is required for the localisation of ASH1 mRNA, encoding a transcriptional repressor that is essential for differential expression of the HO gene and mating type switching in budding yeast. Mutations in Myo4p, in proteins of the actin cytoskeleton, and in four other specific genes, SHE2-SHE5 disrupt the daughter-specific localisation of ASH1 mRNA. In order to understand if Myo4p is directly participating in mRNA transport, we used in situ colocalisation and coprecipitation of Myo4p and ASH1 mRNA to test for their interaction. Our results indicate an association of Myo4p and ASH1 mRNA that depends on the activity of two other genes involved in ASH1 mRNA localisation, SHE2 and SHE3. This strongly suggests a direct role of Myo4p myosin as a transporter of localised mRNAs, convincingly supporting the concept of motor-protein based mRNA localisation.  (+info)