Inhibition of doxorubicin toxicity in cultured neonatal mouse cardiomyocytes with elevated metallothionein levels. (33/29089)

Controversial results have been reported regarding whether metallothionein (MT) functions in doxorubicin (DOX) detoxification in the heart. To determine unequivocally the role of MT in cardiac protection against the toxicity of DOX, ventricular cardiomyocytes isolated from 1- to 3-day neonatal transgenic mice with high levels of cardiac MT and from nontransgenic control animals were applied. On the 6th day of culturing, MT concentrations in the transgenic cardiomyocytes were about 2-fold higher than those in the nontransgenic cells. DOX was added directly into the cultures. Compared with nontransgenic controls, transgenic cardiomyocytes displayed a significant (p <.05) resistance to DOX cytotoxicity, as measured by morphological alterations, cell viability, and lactate dehydrogenase leakage from the cells. This cytoprotective effect of MT correlated with its inhibition of DOX-induced lipid peroxidation. These observations demonstrate unequivocally that elevation of MT concentrations in the cardiomyocytes of 2-fold higher than normal provides efficient protection against DOX toxicity.  (+info)

Thioridazine lengthens repolarization of cardiac ventricular myocytes by blocking the delayed rectifier potassium current. (34/29089)

Proarrhythmia has been observed with the antipsychotic agent thioridazine (THIO). The mechanisms underlying these effects are unknown. The objectives of this study were 1) to characterize the effects of THIO on cardiac repolarization and 2) to determine whether lengthening of the Q-T interval could be explained by blocking major K+-repolarizing currents. Isolated, buffer-perfused guinea pig hearts (n = 32) were stimulated at various pacing cycle lengths (150-250 ms) and exposed to THIO at concentrations ranging from 300 nM to 3 microM. THIO increased monophasic action potential duration at 90% repolarization (MAPD90) in a concentration-dependent manner from 14.9 +/- 1.8 at 300 nM to 37.1 +/- 3.2 ms at 3 microM. Increase in MAPD90 was also reverse frequency-dependent; THIO (300 nM) increased MAPD90 by 14.9 +/- 1.8 ms at a pacing cycle length of 250 ms, but by only 7.7 +/- 1.2 ms at a pacing cycle length of 150 ms. Patch-clamp experiments demonstrated that THIO decreases the time-dependent outward K+ current elicited by short depolarizations (250 ms; IK250) in a concentration-dependent manner. Estimated IC50 for IK250, which mostly underlies IKr, was 1.25 microM. Time-dependent outward K+ current elicited in tsA201 cells expressing high levels of HERG protein was also decreased approximately 50% by 1.25 microM THIO. On the other hand, THIO was less potent (IC50 of 14 microM) to decrease time-dependent K+ current elicited by long pulses (5000 ms; IK5000). Under the latter conditions, IK5000 corresponds mainly to IKs. Thus, these results demonstrate block of K+ currents and lengthening of cardiac repolarization by THIO in a concentration-dependent manner. This may provide an explanation of Q-T prolongation observed in some patients treated with THIO.  (+info)

Investigation of distal aortic compliance and vasodilator responsiveness in heart failure due to proximal aortic stenosis in the guinea pig. (35/29089)

Hypotension and syncope are recognized features of chronic aortic stenosis. This study examined vasomotor responses and dynamic compliance in isolated abdominal aortae after chronic constriction of the ascending aorta. Guinea pigs underwent constriction of the ascending aorta or sham operation. Sections of descending aorta were removed for studies of contractile performance and compliance. Dynamic compliance was measured using a feedback-controlled pulsatile pressure system at frequencies of 0.5, 1.5 and 2.5 Hz and mean pressures from 40 to 100 mmHg. Chronic (149+/-6 days) aortic constriction resulted in significant increases in organ weight/body weight ratios for left ventricle (58%), right ventricle (100%) and lung (61%). The presence of heart failure was indicated by increased lung weights, left ventricular end-diastolic pressure and systemic vascular resistance, reduced cardiac output and increased levels of plasma atrial natriuretic peptide (166%), adrenaline (x20), noradrenaline (106%) and dopamine (x3). Aortic rings showed similar constrictor responses to phenylephrine and angiotensin II, but maximal vasodilator responses to acetylcholine and isoprenaline were significantly increased (144% and 48% respectively). Dilator responses to sodium nitroprusside, forskolin and cromokalim were unchanged. Compliance of all vessels decreased with increasing pulsatile frequency and to a lesser extent with increased mean pressure, but were similar in aortic-constricted and control groups. Chronic constriction of the ascending aorta resulted in heart failure and increased vasodilator responses to acetylcholine and isoprenaline in the distal aorta while dynamic compliance was unchanged. We hypothesize that increased endothelium-mediated vasodilatation may contribute to hypotension and syncope in patients with left ventricular outflow obstruction.  (+info)

Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. (36/29089)

Using a reconstituted complex of profilin and skeletal muscle actin as an antigen, we generated a monoclonal mouse antibody against actin, termed 2G2. As revealed by immunoblots of proteolytic actin fragments and by pepscan analysis, the antibody recognises a nonsequential epitope on actin which is located within three different regions of the sequence, consisting of aa131-139, aa155-169, and aa176-187. In the actin model derived from X-ray diffraction, these sequences lie spatially close together in the region of the nucleotide-binding cleft, but do not form a coherent patch. In immunoblots, 2G2 reacts with all SDS-denatured actin isoforms and with actins of many vertebrates. In contrast, its immunofluorescence reactivity is highly selective and fixation-dependent. In fibroblasts and myogenic cells, fixed and extracted by formaldehyde/detergent, stress fibres or myofibrils, respectively, remained unstained. Likewise, after microinjection into living cells, 2G2 did not bind to such microfilament bundles. Extraction of myosin and tropomyosin did not alter this pattern indicating that the lack in reactivity is probably not due to epitope-masking by actin-binding proteins. More likely, the reason for the lack of reactivity with filamentous actin is that its epitope is not accessible in F-actin. However, the antibody revealed a distinct pattern of nuclear dots in differentiated myogenic cells but not in myoblasts, and of fibrillar structures in nuclei of Xenopus oocytes. In contrast, after methanol treatment, a 2G2-specific staining of stress fibres and myofibrils was observed, but no nuclear dot staining. We conclude that 2G2, in addition to binding to SDS- and methanol-denatured actin, recognises a specific conformation of native actin which is present in the nucleus and specified by compaction of the antibody-reactive region into a coherent patch. This conformation is apparently present in differentiated myogenic cells and oocytes, but not in cytoplasmic actin filament bundles.  (+info)

Adrenomedullin is upregulated in the heart and aorta during the early and late stages of sepsis. (37/29089)

Although circulating levels of adrenomedullin (ADM), a newly reported vasodilatory peptide with 52 amino acid residues in the human and 50 amino acid residues in the rat, are elevated during the early and late stages of sepsis, ADM levels in cardiovascular tissues and its precise localization remain to be determined. To study this, rats were subjected to sepsis by cecal ligation and puncture (CLP), followed by administration of 3 ml/100 g b.wt. normal saline to these and sham-operated animals. The heart and thoracic aorta were harvested at 5 h (i.e. the early stage of sepsis) and 20 h (late sepsis) after CLP. Tissue levels of ADM were determined by radioimmunoassay. The localization of ADM in the left ventricle and thoracic aorta was examined by using immunohistochemistry and electron microscopy techniques. The results indicated that ADM levels in the heart and thoracic aorta increased significantly at 5 h after CLP and remained elevated at 20 h after the onset of sepsis. Immunohistochemistry findings showed that ADM immunoreaction products were localized in the cytoplasm of the cardiac myocytes and aortic endothelial cells. Using electron microscopy, ADM immunoreaction products were found in the cytoplasmic matrixes. The immunostainings were also associated with the outer membranes of mitochondria and vesicles of the myocytes as well as vascular endothelial cells. It appears that the cardiovascular tissues, among other organ systems, contribute to the increased levels of plasma ADM under those conditions. Since ADM is localized in different cell populations in the heart and the large blood vessel (i.e. myocytes versus vascular endothelial cells), this peptide may play a differential role in regulating cardiac and vascular functions during sepsis as an autocrine and/or paracrine mediator.  (+info)

Nitric oxide inhibits cardiac energy production via inhibition of mitochondrial creatine kinase. (38/29089)

Nitric oxide biosynthesis in cardiac muscle leads to a decreased oxygen consumption and lower ATP synthesis. It is suggested that this effect of nitric oxide is mainly due to the inhibition of the mitochondrial respiratory chain enzyme, cytochrome c oxidase. However, this work demonstrates that nitric oxide is able to inhibit soluble mitochondrial creatine kinase (CK), mitochondrial CK bound in purified mitochondria, CK in situ in skinned fibres as well as the functional activity of mitochondrial CK in situ in skinned fibres. Since mitochondrial isoenzyme is functionally coupled to oxidative phosphorylation, its inhibition also leads to decreased sensitivity of mitochondrial respiration to ADP and thus decreases ATP synthesis and oxygen consumption under physiological ADP concentrations.  (+info)

Chlamydia infections and heart disease linked through antigenic mimicry. (39/29089)

Chlamydia infections are epidemiologically linked to human heart disease. A peptide from the murine heart muscle-specific alpha myosin heavy chain that has sequence homology to the 60-kilodalton cysteine-rich outer membrane proteins of Chlamydia pneumoniae, C. psittaci, and C. trachomatis was shown to induce autoimmune inflammatory heart disease in mice. Injection of the homologous Chlamydia peptides into mice also induced perivascular inflammation, fibrotic changes, and blood vessel occlusion in the heart, as well as triggering T and B cell reactivity to the homologous endogenous heart muscle-specific peptide. Chlamydia DNA functioned as an adjuvant in the triggering of peptide-induced inflammatory heart disease. Infection with C. trachomatis led to the production of autoantibodies to heart muscle-specific epitopes. Thus, Chlamydia-mediated heart disease is induced by antigenic mimicry of a heart muscle-specific protein.  (+info)

beta3-adrenoceptor control the cystic fibrosis transmembrane conductance regulator through a cAMP/protein kinase A-independent pathway. (40/29089)

In human cardiac myocytes, we have previously identified a functional beta3-adrenoceptor in which stimulation reduces action potential duration. Surprisingly, in cardiac biopsies obtained from cystic fibrosis patients, beta3-adrenoceptor agonists produced no effects on action potential duration. This result suggests the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) chloride current in the electrophysiological effects of beta3-adrenoceptor stimulation in non-cystic fibrosis tissues. We therefore investigated the control of CFTR activity by human beta3-adrenoceptors in a recombinant system: A549 human cells were intranuclearly injected with plasmids encoding CFTR and beta3-adrenoceptors. CFTR activity was functionally assayed using the 6-methoxy-N-(3-sulfopropyl)quinolinium fluorescent probe and the patch-clamp technique. Injection of CFTR-cDNA alone led to the expression of a functional CFTR protein activated by cAMP or cGMP. Co-expression of CFTR (but not of mutated DeltaF508-CFTR) with high levels of beta3-adrenoceptor produced an increased halide permeability under base-line conditions that was not further sensitive to cAMP or beta3-adrenoceptor stimulation. Patch-clamp experiments confirmed that CFTR channels were permanently activated in cells co-expressing CFTR and a high level of beta3-adrenoceptor. Permanent CFTR activation was not associated with elevated intracellular cAMP or cGMP levels. When the expression level of beta3-adrenoceptor was lowered, CFTR was not activated under base-line conditions but became sensitive to beta3-adrenoceptor stimulation (isoproterenol plus nadolol, SR 58611, or CGP 12177). This later effect was not prevented by protein kinase A inhibitors. Our results provide molecular evidence that CFTR but not mutated DeltaF508-CFTR is regulated by beta3-adrenoceptors expression through a protein kinase A-independent pathway.  (+info)