Loading...
(1/838) RecA-Mediated gene conversion and aminoglycoside resistance in strains heterozygous for rRNA.

Clinical resistance to aminoglycosides in general is due to enzymatic drug modification. Mutational alterations of the small ribosomal subunit rRNA have recently been found to mediate acquired resistance in bacterial pathogens in vivo. In this study we investigated the effect of 16S rRNA heterozygosity (wild-type [wt] and mutant [mut] operons at position 1408 [1408wt/1408mut]) on aminoglycoside resistance. Using an integrative vector, we introduced a single copy of a mutated rRNA operon (1408 A-->G) into Mycobacterium smegmatis, which carries two chromosomal wild-type rRNA operons; the resultant transformants exhibited an aminoglycoside-sensitive phenotype. In contrast, introduction of the mutated rRNA operon into an M. smegmatis rrnB knockout strain carrying a single functional chromosomal wild-type rRNA operon resulted in aminoglycoside-resistant transformants. Subsequent analysis by DNA sequencing and RNase protection assays unexpectedly demonstrated a homozygous mutant genotype, rRNAmut/rRNAmut, in the resistant transformants. To investigate whether RecA-mediated gene conversion was responsible for the aminoglycoside-resistant phenotype in the rRNAwt/rRNAmut strains, recA mutant strains were generated by allelic exchange techniques. Transformation of the recA rrnB M. smegmatis mutant strains with an integrative vector expressing a mutated rRNA operon (Escherichia coli position 1408 A-->G) resulted in transformants with an aminoglycoside-sensitive phenotype. Subsequent analysis showed stable heterozygosity at 16S rRNA position 1408 with a single wild-type allele and a single resistant allele. These results demonstrate that rRNA-mediated mutational resistance to aminoglycosides is recessive.  (+info)

(2/838) Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan.

Three Mycobacterium smegmatis mutants selected for resistance to triclosan each had a different mutation in InhA, an enoyl reductase involved in fatty acid synthesis. Two expressed some isoniazid resistance. A mutation originally selected on isoniazid also mediated triclosan resistance, as did the wild-type inhA gene on a multicopy plasmid. Replacement of the mutant chromosomal inhA genes with wild-type inhA eliminated resistance. These results suggest that M. smegmatis InhA, like its Escherichia coli homolog FabI, is a target for triclosan.  (+info)

(3/838) Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide.

Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosis are unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistant M. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosis to PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.  (+info)

(4/838) A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates.

Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a beta-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the alpha-branch of mycolic acids, followed by the joining of these two branches.  (+info)

(5/838) Integron-mediated rifampin resistance in Pseudomonas aeruginosa.

A new rifampin resistance gene, arr-2, has been found in Pseudomonas aeruginosa. The ARR-2 protein shows 54% amino acid identity to the rifampin ADP-ribosylating transferase encoded by the arr gene from Mycobacterium smegmatis. This arr-2 gene is located on a gene cassette within a class I integron.  (+info)

(6/838) Apoptosis of Mycobacterium avium-infected macrophages is mediated by both tumour necrosis factor (TNF) and Fas, and involves the activation of caspases.

Mycobacterium avium causes disseminated infection in AIDS patients and several forms of infection in immunocompetent hosts. Recent studies have shown that M. avium infection of macrophages in vitro leads to apoptosis of significant numbers of infected cells. Several strains of M. avium used to infect human macrophages for 5 days (multiplicity of infection of 10) triggered 28-46% higher levels of apoptosis than observed with uninfected macrophages at the same time points. Mycobacterium avium strains unable to replicate intracellularly (rep-) resulted in a 15% rate of apoptosis, while M. smegmatis-infected monolayers showed the same percentage of apoptotic cells as the uninfected macrophage control. The presence of anti-TNF-alpha antibody reduced apoptosis to 17% and the presence of anti-Fas antibody reduced apoptosis to 10%. When both antibodies were used together, the apoptosis level was 5% above the control. Treatment with TGF-beta also reduced the number of apoptotic cells in infected monolayers. If intracellular growth was inhibited, apoptosis of macrophages decreased significantly. It was also shown that apoptosis was associated with IL-1 beta-converting enzyme (ICE) activation and was significantly reduced by a caspase inhibitor. Gaining understanding of the mechanisms of M. avium-associated apoptosis of macrophages will provide important insight into M. avium pathogenesis.  (+info)

(7/838) Enhanced gene replacement in mycobacteria.

Allelic replacement will be a vital tool for understanding gene function in mycobacteria. Disruption of the chromosomal hisD gene of Mycobacterium smegmatis by standard gene replacement methods was surprisingly difficult, with most products being caused by illegitimate recombination (IR) events. A recombination assay was therefore developed and used to optimize conditions for homologous recombination (HR) in M. smegmatis. Treatment of competent cells with UV, hydrogen peroxide or mitomycin C did not improve the frequency of HR; however, treatment of the DNA with alkali or UV enhanced recombination frequency, while boiling did not. Applying these observations to allele replacement, UV and alkali treatment of transforming DNA increased HR events with pyrF and hisD, while the level of IR was unchanged. The introduction of ss phagemid DNA improved the level of HR and abolished IR. In Mycobacterium intracellulare the use of alkali-denatured DNA increased the numbers of recombinants obtained with an inactivated 19Ag gene, while in Mycobacterium tuberculosis, inactivation of a putative haemolysin gene, tlyA, was achieved using both UV-irradiated DNA and ss phagemid DNA. Significantly, IR, which has been reported to be a problem in this species, was not observed. Thus, four genes in three species were successfully knocked-out using non-replicating DNA pretreated with alkali, UV or in an ss form. The use of these methods to enhance HR will greatly facilitate experiments to inactivate other genes in these important species.  (+info)

(8/838) Enhancing the immunotherapeutic potential of mycobacteria by transfection with tumour necrosis factor-alpha.

In an attempt to enhance the anti-tumour properties of mycobacteria we have developed recombinant forms of Mycobacterium smegmatis which express and secrete biologically active human tumour necrosis factor-alpha (TNF-alpha). This was achieved by transfecting M. smegmatis using shuttle plasmids incorporating the cDNA sequence for the human TNF-alpha mature peptide. In vitro experiments on a panel of human bladder tumour cell lines (EJ18, MGH-U1, RT4, RT112) indicate that our genetically modified mycobacteria are more effective than wild-type at inducing or up-regulating the expression of intracellular adhesion molecule-1 and the secretion of an array of proinflammatory cytokines [interleukin-1 (IL-1), IL-6, IL-8, granulocyte-macrophage colony-stimulating factor]. We have also demonstrated increased adhesion molecule and cytokine expression in response to mycobacteria transfected with vector containing no gene insert. However, this was not as pronounced as that observed following tumour cell stimulation by the TNF-alpha-transfected strain. In contrast, in three out of four tumour cell lines all M. smegmatis strains were found to down-regulate the secretion of the anti-inflammatory cytokine transforming growth factor-beta1. Our studies have also confirmed that M. smegmatis is a powerful inhibitor of bladder tumour cell growth and revealed that its antiproliferative potency is enhanced by transfecting with human TNF-alpha and, to a lesser extent, with vector alone. All M. smegmatis strains were effective in the activation of peripheral blood leucocyte cultures. However, no differences were observed in the ability of the TNF-alpha-transfected, mock-transfected and wild-type mycobacteria to induce tumour cell killing activity. These results suggest that the immunomodulatory effects of M. smegmatis can be enhanced by transfection with vectors which allow the secretion of human TNF-alpha, thus increasing mycobacterial immunotherapeutic potential.  (+info)