The Golgi apparatus plays a significant role in the maintenance of Ca2+ homeostasis in the vps33Delta vacuolar biogenesis mutant of Saccharomyces cerevisiae. (57/138264)

The vacuole is the major site of intracellular Ca2+ storage in yeast and functions to maintain cytosolic Ca2+ levels within a narrow physiological range. In this study, we examined how cellular Ca2+ homeostasis is maintained in a vps33Delta vacuolar biogenesis mutant. We found that growth of the vps33Delta strain was sensitive to high or low extracellular Ca2+. This strain could not properly regulate cytosolic Ca2+ levels and was able to retain only a small fraction of its total cellular Ca2+ in a nonexchangeable intracellular pool. Surprisingly, the vps33Delta strain contained more total cellular Ca2+ than the wild type strain. Because most cellular Ca2+ is normally found within the vacuole, this suggested that other intracellular compartments compensated for the reduced capacity to store Ca2+ within the vacuole of this strain. To test this hypothesis, we examined the contribution of the Golgi-localized Ca2+ ATPase Pmr1p in the maintenance of cellular Ca2+ homeostasis. We found that a vps33Delta/pmr1Delta strain was hypersensitive to high extracellular Ca2+. In addition, certain combinations of mutations effecting both vacuolar and Golgi Ca2+ transport resulted in synthetic lethality. These results indicate that the Golgi apparatus plays a significant role in maintaining Ca2+ homeostasis when vacuolar biogenesis is compromised.  (+info)

Deletion mutation analysis of the mutS gene in Escherichia coli. (58/138264)

The MutS protein is part of the dam-directed MutHLS mismatch repair pathway in Escherichia coli. We have constructed deletion derivatives in the mutS gene, which retain the P-loop coding region for ATP binding. The mutant proteins were assayed for ATP hydrolysis, heteroduplex DNA binding, heterodimer MutS formation, and the ability to interact with MutL. Dimerization was assayed by expressing His6-tagged wild-type and non-tagged deletion mutant proteins in the same cell and isolating the His6-tagged protein followed by MutS immunoblotting after SDS-polyacrylamide gel electrophoresis. MutS-MutL interaction was measured using the same technique except that the MutL protein carried the His6 tag. Our results indicate that DNA binding ability resides in the N-terminal end of MutS, and dimerization and MutL interactions are located in the C-terminal end. Given the extensive amino acid homology in the MutS family our results with E. coli should be applicable to MutS homologues in other prokaryotes and eukaryotes.  (+info)

Biased JH usage in plasma cell immunoglobulin gene sequences from colonic mucosa in ulcerative colitis but not in Crohn's disease. (59/138264)

BACKGROUND: Ulcerative colitis is an inflammatory disease of the colonic and rectal mucosa. Autoantibodies have been observed in ulcerative colitis which may have a role in the pathogenesis of the disease. Evidence also suggests that there is an hereditary predisposition towards the disease, although no individual genes have been identified. AIMS: This is a pilot study of immunoglobulin heavy chain genes (IgH) in ulcerative colitis to determine whether they have any particular genetic characteristics which may lead to a better understanding of the disease aetiology. SUBJECTS: Colonic or rectal tissue was obtained from five children with ulcerative colitis. Tissue was also obtained from five children with Crohn's disease and five children who did not have inflammatory bowel disease as controls. METHODS: B cells and IgD+ B cells were identified by immunohistochemistry on frozen sections. Areas of lamina propria containing plasma cells, and areas of IgD+ B cells were microdissected. The immunoglobulin genes were PCR amplified, cloned, and sequenced. Sequences were analysed for content of somatic mutations and composition of heavy chain. RESULTS: An increase in the use of JH6 and DXP'1, and a decrease in the use of JH4, gene segments in immunoglobulin genes from lamina propria plasma cells, and from virgin IgD+ B cells, was found in patients with ulcerative colitis. These biases were not present in the control groups. CONCLUSIONS: There is a fundamental difference in the immunoglobulin genes from patients with ulcerative colitis. Whether this is caused by a difference in content of immunoglobulin gene segments in the germline or a difference in the recombination mechanism is not known.  (+info)

Screening for mutations of the cationic trypsinogen gene: are they of relevance in chronic alcoholic pancreatitis? (60/138264)

BACKGROUND: In hereditary pancreatitis mutations of exons 2 (N21I) and 3 (R117H) of the cationic trypsinogen gene have been described. AIMS: To investigate whether the same mutations can also be found in patients with chronic alcoholic pancreatitis. METHODS: Leucocyte DNA was prepared from 23 patients with chronic alcoholic pancreatitis, 21 with alcoholic liver cirrhosis, 34 individuals from seven independent families with hereditary pancreatitis, and 15 healthy controls. DNA was also obtained from pancreatic tissue (n=7) and from pancreatic juice (n=5) of patients suffering from chronic alcoholic pancreatitis. R117H was detected by restriction digestion with Afl III. N21I was identified by an allele specific polymerase chain reaction (PCR). RESULTS: R117H was detected in four families with hereditary pancreatitis. The N21I mutation was identified in three families. All mutations were confirmed by sequencing of the corresponding DNAs. In patients with chronic alcoholic pancreatitis neither the exon 2 nor exon 3 mutations were present in blood leucocytes, pancreatic juice, or pancreatic tissue. DNA of the patients with alcoholic liver cirrhosis as well as all controls was of wild type. CONCLUSIONS: The allele specific PCR may be used to screen for the N21I mutation of cationic trypsinogen. Both trypsinogen mutations were found in hereditary pancreatitis but do not seem to be major pathogenic factors in chronic alcoholic pancreatitis.  (+info)

Isolation and characterization of two mouse L cell lines resistant to the toxic lectin ricin. (61/138264)

Two variant mouse L cell lines (termed CL 3 and CL 6) have been selected for resistant to ricin, a galactose-binding lectin with potent cytotoxic activity. The resistant lines exhibit a 50 to 70% decrease in ricin binding and a 300- to 500-fold increase in resistance to the toxic effects of ricin. Crude membrane preparations of CL 3 cells have increased sialic acid content (200% of control), while the galactose, mannose, and hexosamine content is within normal limits. Both the glycoproteins and glycolipids of CL 3 cells have increased sialic acid, with the GM3:lactosylceramide ratios for parent L and CL 3 cells being 0.29 and 1.5, respectively. In contrast, the membranes of CL 6 cells have a decrease in sialic acid, galactose, and hexosamine content with mannose being normal. Both cell lines have specific alterations in glycosyltransferase activities which can account for the observed membrane sugar changes. CL 3 cells have increased CMP-sialic acid:glycoprotein sialyltransferase and GM3 synthetase activities, while CL 6 cells have decrease UDP-GlcNAc:glycoproteinN-acetylglucosaminyltransferase and DPU-galactose:glycoprotein galactosyltransferase activities. The increased sialic acid content of CL 3 cells serves to mask ricin binding sites, since neuraminidase treatment of this cell line restores ricin binding to essentially normal levels. However, the fact that neuraminidase-treated CL 3 cells are still 45-fold resistant to ricin indicates that either a special class of productive ricin binding sites is not being exposed or that the cell line has a second mechanism for ricin resistance.  (+info)

Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. (62/138264)

Using site-directed fluorescent labeling, we examined conformational changes in the S4 segment of each domain of the human skeletal muscle sodium channel (hSkM1). The fluorescence signals from S4 segments in domains I and II follow activation and are unaffected as fast inactivation settles. In contrast, the fluorescence signals from S4 segments in domains III and IV show kinetic components during activation and deactivation that correlate with fast inactivation and charge immobilization. These results indicate that in hSkM1, the S4 segments in domains III and IV are responsible for voltage-sensitive conformational changes linked to fast inactivation and are immobilized by fast inactivation, while the S4 segments in domains I and II are unaffected by fast inactivation.  (+info)

Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. (63/138264)

Beta-Catenin has a critical role in E-cadherin-mediated cell-cell adhesion, and it also functions as a downstream signaling molecule in the wnt pathway. Mutations in the putative glycogen synthase kinase 3beta phosphorylation sites near the beta-catenin amino terminus have been found in some cancers and cancer cell lines. The mutations render beta-catenin resistant to regulation by a complex containing the glycogen synthase kinase 3beta, adenomatous polyposis coli, and axin proteins. As a result, beta-catenin accumulates in the cytosol and nucleus and activates T-cell factor/ lymphoid enhancing factor transcription factors. Previously, 6 of 27 melanoma cell lines were found to have beta-catenin exon 3 mutations affecting the N-terminal phosphorylation sites (Rubinfeld B, Robbins P, Elgamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997, 275:1790-1792). To assess the role of beta-catenin defects in primary melanomas, we undertook immunohistochemical and DNA sequencing studies in 65 melanoma specimens. Nuclear and/or cytoplasmic localization of beta-catenin, a potential indicator of wnt pathway activation, was seen focally within roughly one third of the tumors, though a clonal somatic mutation in beta-catenin was found in only one case (codon 45 Ser-->Pro). Our findings demonstrate that beta-catenin mutations are rare in primary melanoma, in contrast to the situation in melanoma cell lines. Nonetheless, activation of beta-catenin, as indicated by its nuclear and/or cytoplasmic localization, appears to be frequent in melanoma, and in some cases, it may reflect focal and transient activation of the wnt pathway within the tumor.  (+info)

Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. (64/138264)

Endocrine pancreatic tumors (EPT) and neuroendocrine tumors (NET) occur sporadically and rarely in association with multiple endocrine neoplasia type 1 (MEN1). We analyzed the frequency of allelic deletions and mutations of the recently identified MEN1 gene in 53 sporadic tumors including 30 EPT and 23 NET (carcinoids) of different locations and types. Allelic deletion of the MEN1 locus was identified in 18/49 (36.7%) tumors (13/30, 43.3% in EPT and 5/19, 26.3% in NET) and mutations of the MEN1 gene were present in 8/52 (15.3%) tumors (4/30 (13.3%) EPT and 4/22 (18.1%) NET). The somatic mutations were clustered in the 5' region of the coding sequence and most frequently encompassed missense mutations. All tumors with mutations exhibited a loss of the other allele and a wild-type sequence of the MEN1 gene in nontumorous DNA. In one additional patient with a NET of the lung and no clinical signs or history of MEN1, a 5178-9G-->A splice donor site mutation in intron 4 was identified in both the tumor and blood DNA, indicating the presence of a thus far unknown MEN1 syndrome. In most tumor groups the frequency of allelic deletions at 11q13 was 2 to 3 times higher than the frequency of identified MEN1 gene mutations. Some tumor types, including rare forms of EPT and NET of the duodenum and small intestine, exhibited mutations more frequently than other types. Furthermore, somatic mutations were not restricted to foregut tumors but were also detectable in a midgut tumor (15.2% versus 16.6%). Our data indicate that somatic MEN1 gene mutations contribute to a subset of sporadic EPT and NET, including midgut tumors. Because the frequency of mutations varies significantly among the investigated tumor subgroups and allelic deletions are 2 to 3 times more frequently observed, factors other than MEN1 gene inactivation, including other tumor-suppressor genes on 11q13, may also be involved in the tumorigenesis of these neoplasms.  (+info)