In situ detection of activated Bruton's tyrosine kinase in the Ig signaling complex by phosphopeptide-specific monoclonal antibodies. (65/31010)

Bruton's tyrosine kinase (Btk) is a critical transducer of signals originating from the B cell antigen receptor (BCR). Dosage, sequential phosphorylation, and protein interactions are interdependent mechanisms influencing Btk function. Phosphopeptide-specific mAbs recognizing two distinct phosphotyrosine modifications were used to quantify Btk activation by immunofluorescent techniques during B cell stimulation. In a population of cultured B cells stimulated by BCR crosslinking and analyzed by flow cytometry, transient phosphorylation of the regulatory Btk tyrosine residues (551Y and 223Y) was detected. The kinetics of phosphorylation of the residues were temporally distinct. Tyrosine 551, a transactivating substrate site for Src-family kinases, was maximally phosphorylated within approximately 30 seconds of stimulation as monitored by flow cytometry. Tyrosine 223, an autophosphorylation site within the SH3 domain, was maximally phosphorylated at approximately 5 minutes. Btk returned to a low tyrosine phosphorylation level within 30 minutes, despite persistent elevation of global tyrosine phosphorylation. Colocalization of activated Btk molecules with the crosslinked BCR signaling complex was observed to coincide with the period of maximal Btk tyrosine phosphorylation when stimulated B cells were analyzed with confocal microscopy. The results of these in situ temporal and spatial analyses imply that Btk signaling occurs in the region of the Ig receptor signaling complex, suggesting a similar location for downstream targets of its activity.  (+info)

Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin. (66/31010)

Ca2+-induced inhibition of alpha1C voltage-gated Ca2+ channels is a physiologically important regulatory mechanism that shortens the mean open time of these otherwise long-lasting high-voltage-activated channels. The mechanism of action of Ca2+ has been a matter of some controversy, as previous studies have proposed the involvement of a putative Ca2+-binding EF hand in the C terminus of alpha1C and/or a sequence downstream from this EF-hand motif containing a putative calmodulin (CaM)-binding IQ motif. Previously, using site directed mutagenesis, we have shown that disruption of the EF-hand motif does not remove Ca2+ inhibition. We now show that the IQ motif binds CaM and that disruption of this binding activity prevents Ca2+ inhibition. We propose that Ca2+ entering through the voltage-gated pore binds to CaM and that the Ca/CaM complex is the mediator of Ca2+ inhibition.  (+info)

Gbeta5 prevents the RGS7-Galphao interaction through binding to a distinct Ggamma-like domain found in RGS7 and other RGS proteins. (67/31010)

The G protein beta subunit Gbeta5 deviates significantly from the other four members of Gbeta-subunit family in amino acid sequence and subcellular localization. To detect the protein targets of Gbeta5 in vivo, we have isolated a native Gbeta5 protein complex from the retinal cytosolic fraction and identified the protein tightly associated with Gbeta5 as the regulator of G protein signaling (RGS) protein, RGS7. Here we show that complexes of Gbeta5 with RGS proteins can be formed in vitro from the recombinant proteins. The reconstituted Gbeta5-RGS dimers are similar to the native retinal complex in their behavior on gel-filtration and cation-exchange chromatographies and can be immunoprecipitated with either anti-Gbeta5 or anti-RGS7 antibodies. The specific Gbeta5-RGS7 interaction is determined by a distinct domain in RGS that has a striking homology to Ggamma subunits. Deletion of this domain prevents the RGS7-Gbeta5 binding, although the interaction with Galpha is retained. Substitution of the Ggamma-like domain of RGS7 with a portion of Ggamma1 changes its binding specificity from Gbeta5 to Gbeta1. The interaction of Gbeta5 with RGS7 blocked the binding of RGS7 to the Galpha subunit Galphao, indicating that Gbeta5 is a specific RGS inhibitor.  (+info)

Purification and characterization of phospholipase B from Kluyveromyces lactis, and cloning of phospholipase B gene. (68/31010)

Phospholipase B (PLB) from the yeast Kluyveromyces lactis was purified to homogeneity from culture medium. The enzyme was highly glycosylated with apparent molecular mass of 160-250 kDa, and had two pH optima, at pH 2.0 and pH 7.5. At acidic pH the enzyme hydrolyzed all phospholipid substrates tested here without metal ion. On the other hand, at alkaline pH the enzyme showed substrate specificity for phosphatidylcholine and lysophosphatidylcholine and required Ca2+, Fe3+, or Al3+ for the activity. The alkaline activity was increased more than 20-fold in the presence of Al3+ compared to that in the presence of Ca2+. cDNA sequence of PLB (KlPLB) was analyzed by a combination of several PCR procedures. KlPLB encoded a protein consist of 640 amino acids and the deduced amino acid sequence showed 66.7% similarity with the T. delbrueckii PLB. The amino acid sequence contained the lipase consensus sequence (G-X-S-X-G) and the catalytic aspartic acid motif. Replacement of Arg-112 or Asp-406 with alanine caused loss of the enzymatic activity at both pH. These results suggested that PLB activity are dependent on a catalytic mechanism similar to that of cytosolic phospholipase A2.  (+info)

A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. (69/31010)

We have identified a novel fibroblast growth factor receptor 3 (FGFR3) missense mutation in four unrelated individuals with skeletal dysplasia that approaches the severity observed in thanatophoric dysplasia type I (TD1). However, three of the four individuals developed extensive areas of acanthosis nigricans beginning in early childhood, suffer from severe neurological impairments, and have survived past infancy without prolonged life-support measures. The FGFR3 mutation (A1949T: Lys650Met) occurs at the nucleotide adjacent to the TD type II (TD2) mutation (A1948G: Lys650Glu) and results in a different amino acid substitution at a highly conserved codon in the kinase domain activation loop. Transient transfection studies with FGFR3 mutant constructs show that the Lys650Met mutation causes a dramatic increase in constitutive receptor kinase activity, approximately three times greater than that observed with the Lys650Glu mutation. We refer to the phenotype caused by the Lys650Met mutation as "severe achondroplasia with developmental delay and acanthosis nigricans" (SADDAN) because it differs significantly from the phenotypes of other known FGFR3 mutations.  (+info)

G169R mutation diminishes the metabolic activity of CYP2D6 in Chinese. (70/31010)

The molecular basis of the reduced ability of a Chinese to metabolize debrisoquine was explored by sequencing all of the nine exons of the CYP2D6 gene. The subject has T188, A1846, T2938, and C4268 (CYP2D6*14) instead of C188, G1846, C2938, and G4268 as in wild-type subjects. XbaI restriction fragment length polymorphism indicated that the subject has a 29-kb allele and a gene deletion (11.5 kb) in another allele (CYP2D6*5). A CYP2D6*14 allele together with a CYP2D6*5 allele may cause the poor metabolism of the subject. T188, T2938, and C4268 are common haplotypes in Chinese-extensive metabolizers. The effect of G1846 to A mutation in CYP2D6 metabolism has not been reported. A polymerase chain reaction-based endonuclease digestion test was designed for the G/N1846 polymorphism and 124 Chinese subjects were screened. With DNA sequencing, two other subjects showed the heterozygous G/A1846 and have a relatively high metabolic ratio of debrisoquine hydroxylation. The site-directed mutagenesis was used to create recombinant CYP2D6 cDNA with T188, A1846, or C4268. The cDNA was then transfected into Rat-1 cells. The transfection was confirmed by Southern, Northern, and Western blots. Based on the same microsomal protein level, the bufuralol 1'-hydroxylation activity of CYP2D6(T188) or CYP2D6(A1846) was significantly lower than that of the wild-type CYP2D6. P34S mutation (C188 to T) significantly decreased CYP2D6 activity. G169R mutation (G1846 to A) also decreased CYP2D6 activity and may further reduce the metabolic activity of CYP2D6 protein with P34S, R296C, and S486T mutations.  (+info)

Transcription factors CCAAT/enhancer-binding protein beta and nuclear factor-Y bind to discrete regulatory elements in the very low density lipoprotein receptor promoter. (71/31010)

Expression of the very low density lipoprotein receptor (VLDL-R) is barely detectable in liver, but occurs in adipose tissue, skeletal muscle, heart, and placenta, where it is postulated to supply triglyceride to tissues that utilize fatty acids. To investigate its tissue-specific expression, cell lines were transfected with luciferase reporter gene constructs driven by the 5'-flanking region of the VLDL-R gene. Transcriptional activity of a 4.2-kb promoter fragment was 5-fold higher in BeWo placental cells than in Huh-7 hepatoma cells, consistent with relative endogenous expression of the VLDL-R. By deletion analysis, DNase I protection assays and site-directed mutagenesis, two regulatory elements were essential for maximal promoter activity in BeWo cells: footprint site D (-856 to -830) and an inverted CCAAT box (-703 to -707). Mutation of either element reduced promoter activity by 60% in BeWo cells, but had little effect in Huh-7 cells, suggesting that these elements direct cell-type specific transcription. Electrophoretic mobility-shift assays with BeWo nuclear extracts revealed that the inverted CCAAT box binds transcription factor NF-Y, and site D binds CCAAT/enhancer-binding protein b (C/EBPbeta) and minor amounts of C/EBPalpha and C/EBPdelta. Overexpression of a dominant negative NF-YA vector confirmed involvement of NF-Y in the regulation of the VLDL-receptor gene through the CCAAT box. However overexpression of C/EBP could not stimulate transcription from the VLDL-receptor promoter nor from site D fused to a heterologous promoter, suggesting that the simultaneous binding of an accessory factor(s) may be necessary for C/EBP transactivation via the D site.  (+info)

Analysis of protein-protein interactions by mutagenesis: direct versus indirect effects. (72/31010)

Site-directed mutagenesis, including double-mutant cycles, is used routinely for studying protein-protein interactions. We now present a case analysis of chymotrypsin inhibitor 2 (CI2) and subtilisin BPN' using (i) a residue in CI2 that is known to interact directly with subtilisin (Tyr42) and (ii) two CI2 residues that do not have direct contacts with subtilisin (Arg46 and Arg48). We find that there are similar changes in binding energy on mutation of these two sets of residues. It can thus be difficult to interpret mutagenesis data in the absence of structural information.  (+info)