Infectious virus in transgenic plants inoculated with a nonviable, P1-proteinase defective mutant of a potyvirus. (73/7552)

A mutant (P1-616) of the tobacco vein mottling potyvirus that contains a four-codon insertion in the P1 protein coding region of the viral RNA is unable to infect the normal host plant of the virus. Processing of the P1/HC-Pro cleavage site does not occur during in vitro translation of the mutant viral RNA. When plants transformed with the P1/HC-Pro/P3 coding region of tobacco vein mottling potyvirus RNA were inoculated with P1-616, some of them became infected, although there was a delay in the production of disease symptoms. Virus isolated from these plants was able to infect nontransgenic plants. Two variants of the recovered, infectious virus contained single-nucleotide alterations in the four-codon insertion in the P1-616 genome. In vitro translation of the variant genomic RNAs resulted in partial processing of the P1/HC-Pro cleavage site, although serological analysis of infected tissue showed complete processing in vivo. These results indicate that limited complementation of P1-616 occurs in the transgenic plants and that eventually there arises one or more variants of the mutant sequence that can effect P1/HC-Pro processing and therefore be replicated.  (+info)

Mammalian reovirus L3 gene sequences and evidence for a distinct amino-terminal region of the lambda1 protein. (74/7552)

To complement evidence for nucleoside triphosphate phosphohydrolase (NTPase), RNA helicase, RNA 5' triphosphate phosphohydrolase, and nucleic acid-binding activities by the core shell protein lambda1 of mammalian orthoreoviruses (reoviruses), we determined nucleotide sequences of the lambda1-encoding L3 gene segments from three isolates: type 1 Lang (T1L), type 2 Jones (T2J), and type 3 Dearing (T3D). The T1L and T3D L3 gene sequences and deduced lambda1 protein sequences shared high levels of identity (97.7% and 99.3%, respectively). The lambda1 sequences differed at only 9 of 1275 amino acids. Two single-nucleotide insertions relative to a previously published sequence for T3D L3 extended the lambda1 open reading frame to within 60 nucleotides of the plus-strand 3' end for T3D and the other isolates sequenced, in keeping with the short 3' nontranslated regions of the other nine gene segments. Seven of the nine amino acid differences between T1L and T3D lambda1 were located within the amino-terminal 500 residues of lambda1, a region with putative sequence similarities to NTPases and RNA helicases. The T2J L3 and lambda1 sequences were found to be more divergent, especially within the amino-terminal 180 residues of lambda1, preceding the putative CCHH zinc finger motif. The T2J L3 sequence, along with partial sequences for L3 genes from three other reovirus isolates, suggested that one or more of the polymorphisms at amino acids 71, 215, 500, 1011, and/or 1100 in lambda1 contribute to the L3-determined differences in ATPase activities by T1L and T3D cores. The findings contribute to our ongoing efforts to elucidate sequence-structure-function relationships for the lambda1 core protein.  (+info)

Structure and selectivity in post-translational modification: attaching the biotinyl-lysine and lipoyl-lysine swinging arms in multifunctional enzymes. (75/7552)

The post-translational attachment of biotin and lipoic acid to specific lysine residues displayed in protruding beta-turns in homologous biotinyl and lipoyl domains of their parent enzymes is catalysed by two different ligases. We have expressed in Escherichia coli a sub-gene encoding the biotinyl domain of E.coli acetyl-CoA carboxylase, and by a series of mutations converted the protein from the target for biotinylation to one for lipoylation, in vivo and in vitro. The biotinylating enzyme, biotinyl protein ligase (BPL), and the lipoylating enzyme, LplA, exhibited major differences in the recognition process. LplA accepted the highly conserved MKM motif that houses the target lysine residue in the biotinyl domain beta-turn, but was responsive to structural cues in the flanking beta-strands. BPL was much less sensitive to changes in these beta-strands, but could not biotinylate a lysine residue placed in the DKA motif characteristic of the lipoyl domain beta-turn. The presence of a further protruding thumb between the beta2 and beta3 strands in the wild-type biotinyl domain, which has no counterpart in the lipoyl domain, is sufficient to prevent aberrant lipoylation in E.coli. The structural basis of this discrimination contrasts with other forms of post-translational modification, where the sequence motif surrounding the target residue can be the principal determinant.  (+info)

Molecular characterization of a Brucella species large DNA fragment deleted in Brucella abortus strains: evidence for a locus involved in the synthesis of a polysaccharide. (76/7552)

A Brucella melitensis 16M DNA fragment of 17,119 bp, which contains a large region deleted in B. abortus strains and DNA flanking one side of the deletion, has been characterized. In addition to the previously identified omp31 gene, 14 hypothetical genes have been identified in the B. melitensis fragment, most of them showing homology to genes involved in the synthesis of a polysaccharide. Considering that 10 of the 15 genes are missing in B. abortus and that all the polysaccharides described in the Brucella genus (lipopolysaccharide, native hapten, and polysaccharide B) have been detected in all the species, it seems likely that the genes described here might be part of a cluster for the synthesis of a novel Brucella polysaccharide. Several polysaccharides have been identified as important virulence factors, and the discovery of a novel polysaccharide in the brucellae which is probably not synthesized in B. abortus might be interesting for a better understanding of the pathogenicity and host preference differences observed between the Brucella species. However, the possibility that the genes described in this paper no longer encode the synthesis of a polysaccharide cannot be excluded. Brucellae belong to the alpha-2 subdivision of the class Proteobacteria, which includes other microorganisms living in association with eucaryotic cells, some of them synthesizing extracellular polysaccharides involved in the interaction with the host cell. The genes described in this paper might be a remnant of the common ancestor of the alpha-2 subdivision of the class Proteobacteria, and the brucellae might have lost such extracellular polysaccharide during evolution if it was not necessary for survival or for establishment of the infectious process. Nevertheless, further studies are necessary to identify the entire DNA fragment missing in B. abortus strains and to elucidate the mechanism responsible for such deletion, since only 9,948 bp of the deletion was present in the sequenced B. melitensis DNA fragment.  (+info)

Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. (77/7552)

Two new genes, mrpH and mrpJ, were identified downstream of mrpG in the mrp gene cluster encoding mannose-resistant Proteus-like (MR/P) fimbriae of uropathogenic Proteus mirabilis. Since the predicted MrpH has 30% amino acid sequence identity to PapG, the Galalpha(1-4)Gal-binding adhesin of Escherichia coli P fimbriae, we hypothesized that mrpH encodes the functional MR/P hemagglutinin. MR/P fimbriae, expressed in E. coli DH5alpha, conferred on bacteria both the ability to cause mannose-resistant hemagglutination and the ability to aggregate to form pellicles on the broth surface. Both a DeltamrpH mutant expressed in E. coli DH5alpha and an isogenic mrpH::aphA mutant of P. mirabilis were unable to produce normal MR/P fimbriae efficiently, suggesting that MrpH was involved in fimbrial assembly. Amino acid residue substitution of the N-terminal cysteine residues (C66S and C128S) of MrpH abolished the receptor-binding activity (hemagglutinating ability) of MrpH but allowed normal fimbrial assembly, supporting the notion that MrpH was the functional MR/P hemagglutinin. Immunogold electron microscopy of P. mirabilis HI4320 revealed that MrpH was located at the tip of MR/P fimbriae, also consistent with its role in receptor binding. The isogenic mrpH::aphA mutant of HI4320 was less able to colonize the urine, bladder, and kidneys in a mouse model of ascending urinary tract infection (P < 0.01), and therefore MR/P fimbriae contribute significantly to bacterial colonization in mice. While there are similarities between P. mirabilis MR/P and E. coli P fimbriae, there are more notable differences: (i) synthesis of the MrpH adhesin is required to initiate fimbrial assembly, (ii) MR/P fimbriae confer an aggregation phenotype, (iii) site-directed mutation of specific residues can abolish receptor binding but allows fimbrial assembly, and (iv) mutation of the adhesin gene abolishes virulence in a mouse model of ascending urinary tract infection.  (+info)

Structural characterization of an engineered tandem repeat contrasts the importance of context and sequence in protein folding. (78/7552)

To test a different approach to understanding the relationship between the sequence of part of a protein and its conformation in the overall folded structure, the amino acid sequence corresponding to an alpha-helix of T4 lysozyme was duplicated in tandem. The presence of such a sequence repeat provides the protein with "choices" during folding. The mutant protein folds with almost wild-type stability, is active, and crystallizes in two different space groups, one isomorphous with wild type and the other with two molecules in the asymmetric unit. The fold of the mutant is essentially the same in all cases, showing that the inserted segment has a well-defined structure. More than half of the inserted residues are themselves helical and extend the helix present in the wild-type protein. Participation of additional duplicated residues in this helix would have required major disruption of the parent structure. The results clearly show that the residues within the duplicated sequence tend to maintain a helical conformation even though the packing interactions with the remainder of the protein are different from those of the original helix. It supports the hypothesis that the structures of individual alpha-helices are determined predominantly by the nature of the amino acids within the helix, rather than the structural environment provided by the rest of the protein.  (+info)

Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. (79/7552)

To accelerate gene isolation from plants by positional cloning, vector systems suitable for both chromosome walking and genetic complementation are highly desirable. Therefore, we developed a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. Furthermore, it has the cis sequences required for Agrobacterium-mediated gene transfer into plants. We cloned large genomic DNA fragments of Arabidopsis thaliana into the vector and showed that most of the DNA fragments were maintained stably. Several TAC clones carrying 40- to 80-kb genomic DNA fragments were transferred back into Arabidopsis with high efficiency and shown to be inherited faithfully among the progeny. Furthermore, we demonstrated the practical utility of this vector system for positional cloning in Arabidopsis. A TAC contig was constructed in the region of the SGR1 locus, and individual clones with ca. 80-kb inserts were tested for their ability to complement the gravitropic defects of a homozygous mutant line. Successful complementation enabled the physical location of SGR1 to be delimited with high precision and confidence.  (+info)

Cell specific transformation by c-fms activating loop mutations is attributable to constitutive receptor degradation. (80/7552)

Expression of a receptor for human macrophage-colony stimulating factor (M-CSF or CSF-1), containing a point mutation which changes an aspartate to a valine at position 802 of the activating loop of the kinase domain, potently transforms the haemopoietic cell line FDC-P1 yet prevents Rat-2 fibroblast transformation. In order to understand this apparent paradox, aspartate 802 was changed by cassette mutagenesis to each of the other 19 amino acids. All hydrophobic amino acid substitutions were transforming when tested in FDC-P1 cells yet inactivating when tested in Rat-2 fibroblasts. These same amino acid substitutions also activated receptor degradation, strongly suggesting a causal relationship between receptor degradation and inactivation in fibroblasts. Point mutations or small deletions of Y708 within the kinase insert region of the mutant D802V receptor partly inhibited receptor degradation. The more stable D802V receptor derivatives were able to transform both FDC-P1 cells and Rat-2 fibroblasts, so establishing that the cell specific effect of the c-fmsD802V activating loop mutation is attributable to receptor degradation which accompanies kinase activation and prevents the transformation of Rat-2 but not of FDC-P1 cells.  (+info)