Mrvi1, a common MRV integration site in BXH2 myeloid leukemias, encodes a protein with homology to a lymphoid-restricted membrane protein Jaw1. (65/7552)

Ecotropic MuLVs induce myeloid leukemia in BXH2 mice by insertional mutagenesis of cellular proto-oncogenes or tumor suppressor genes. Disease genes can thus be identified by viral tagging as common sites of viral integration in BXH2 leukemias. Previous studies showed that a frequent common integration site in BXH2 leukemias is the Nf1 tumor suppressor gene. Unexpectedly, about half of the viral integrations at Nf1 represented a previously undiscovered defective nonecotropic virus, termed MRV. Because other common integration sites in BXH2 leukemias encoding proto-oncogenes contain ecotropic rather than MRV viruses, it has been speculated that MRV viruses may selectively target tumor suppressor genes. To determine if this were the case, 21 MRV-positive BXH2 leukemias were screened for new MRV common integration sites. One new site, Mrvi1 was identified that was disrupted by MRV in two of the leukemias. Ecotropic virus did not disrupt Mrvi1 in 205 ecotropic virus-positive leukemias, suggesting that Mrvi1 is specifically targeted by MRV. Mrvi1 encodes a novel protein with homology to Jaw1, a lymphoid restricted type II membrane protein that localizes to the endoplasmic reticulum. MRV integration occurs at the 5' end of the gene between two differentially used promoters. Within hematopoietic cells, Mrvi1 expression is restricted to megakaryocytes and some myeloid leukemias. Like Jaw1, which is down-regulated during lymphoid differentiation, Mrv1 is downregulated during monocytic differentiation of BXH2 leukemias. Taken together, these data suggest that MRV integration at Mrvi1 induces myeloid leukemia by altering the expression of a gene important for myeloid cell growth and/or differentiation. Experiments are in progress to test whether Mrvi1 is a tumor suppressor gene.  (+info)

Role of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia DBO1. (66/7552)

Two distinct regions of DNA encode the enzymes needed for phthalate degradation by Burkholderia cepacia DBO1. A gene coding for an enzyme (quinolinate phosphoribosyl transferase) involved in the biosynthesis of NAD+ was identified between these two regions by sequence analysis and functional assays. Southern hybridization experiments indicate that DBO1 and other phthalate-degrading B. cepacia strains have two dissimilar genes for this enzyme, while non-phthalate-degrading B. cepacia strains have only a single gene. The sequenced gene was labeled ophE, due to the fact that it is specifically induced by phthalate as shown by lacZ gene fusions. Insertional knockout mutants lacking ophE grow noticeably slower on phthalate while exhibiting normal rates of growth on other substrates. The fact that elevated levels of quinolinate phosphoribosyl transferase enhance growth on phthalate stems from the structural similarities between phthalate and quinolinate: phthalate is a competitive inhibitor of this enzyme and the phthalate catabolic pathway cometabolizes quinolinate. The recruitment of this gene for growth on phthalate thus gives B. cepacia an advantage over other phthalate-degrading bacteria in the environment.  (+info)

Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. (67/7552)

Peptidoglycan hydrolase, LytF (CwlE), was determined to be identical to YhdD (deduced cell wall binding protein) by zymography after insertional inactivation of the yhdD gene. YhdD exhibits high sequence similarity with CwlF (PapQ, LytE) and p60 of Listeria monocytogenes. The N-terminal region of YhdD has a signal sequence followed by five tandem repeated regions containing polyserine residues. The C-terminal region corresponds to the catalytic domain, because a truncated protein without the N-terminal region retained cell wall hydrolase activity. The histidine-tagged LytF protein produced in Escherichia coli cells hydrolyzed the linkage of D-gamma-glutamyl-meso-diaminopimelic acid in murein peptides, indicating that it is a D,L-endopeptidase. Northern hybridization and primer extension analyses indicated that the lytF gene was transcribed by EsigmaD RNA polymerase. Disruption of lytF led to slightly filamentous cells, and a lytF cwlF double mutant exhibited extraordinary microfiber formation, which is similar to the cell morphology of the cwlF sigD mutant.  (+info)

Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition. (68/7552)

Streptococcus agalactiae is a poorly transformable bacterium and studies of molecular mechanisms are difficult due to the limitations of genetic tools. Employing the novel pGh9:ISS1 transposition vector we generated plasmid-based mutant libraries of S. agalactiae strains O90R and AC475 by random chromosomal integration. A screen for mutants with a nonhemolytic phenotype on sheep blood agar led to the identification of a genetic locus harboring several genes that are essential for the hemolytic function and pigment production of S. agalactiae. Nucleotide sequence analysis of nonhemolytic mutants revealed that four mutants had distinct insertion sites in a single genetic locus of 7 kb that was subsequently designated cyl. Eight different open reading frames were identified: cylX, cylD, cylG, acpC, cylZ, cylA, cylB, and cylE, coding for predicted proteins with molecular masses of 11, 33, 26, 11, 15, 35, 32, and 78 kDa, respectively. The deduced amino acid sequence of the protein encoded by cylA harbors a conserved ATP-binding cassette (ABC) motif, and the predicted proteins encoded by cylA and cylB have significant similarities to the nucleotide binding and transmembrane proteins of typical ABC transporter systems. Transcription analysis by reverse transcription-PCR suggests that cylX to cylE are part of an operon. The requirement of acpC and cylZABE for hemolysin production of S. agalactiae was confirmed either by targeted mutagenesis with the vector pGh5, complementation studies with pAT28, or analysis of insertion elements in naturally occurring nonhemolytic mutants.  (+info)

Regulation of beta-galactosidase expression in Bacillus megaterium DSM319 by a XylS/AraC-type transcriptional activator. (69/7552)

The beta-galactosidase-encoding bgaM gene of Bacillus megaterium DSM319 and the divergently orientated bgaR operon were isolated and sequenced. Both traits are subject to catabolite repression. A set of single-gene replacement mutants was generated and used to analyze gene function. BgaR was found to be a XylS/AraC-type positive transcriptional regulator of bgaM; a potential regulator binding site overlaps the bgaM promoter. A mechanism for regulation of beta-galactosidase expression in B. megaterium is proposed.  (+info)

A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. (70/7552)

Campylobacter jejuni colonizes the intestines of domestic and wild animals and is a common cause of human diarrheal disease. We identified a two-component regulatory system, designated the RacR-RacS (reduced ability to colonize) system, that is involved in a temperature-dependent signalling pathway. A mutation of the response regulator gene racR reduced the organism's ability to colonize the chicken intestinal tract and resulted in temperature-dependent changes in its protein profile and growth characteristics.  (+info)

SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. (71/7552)

Escherichia coli fhuF mutants, a sufS::MudI mutant, and a sufD::MudI mutant were found to have the same phenotype: the inability to use ferrioxamine B as an iron source in a plate assay. In addition, the sufS and sufD genes were shown to be regulated by the iron-dependent Fur repressor. Sequence analysis revealed that the sufS open reading frame corresponds to orf f406. The protein SufS belongs to the family of NifS-like proteins, which supply sulfur for [Fe-S] centers. The protein FhuF contains a [2Fe-2S] center. A mutation in the upstream sufD gene (orf f423) caused the same phenotype. The T7 expression system and a His tag allow the isolation in good yield of the FhuF protein from a wild-type strain. In contrast, overproduction of the protein in a DeltasufD strain failed. Radioactive labeling of N-His-FhuF with [35S]methionine showed that the protein was unstable in the DeltasufD mutant.  (+info)

Intron 16 insertion of the angiotensin converting enzyme gene and transcriptional regulation. (72/7552)

BACKGROUND: The insertion/deletion (I/D) polymorphism in intron 16 of angiotensin converting enzyme (ACE) is associated with circulating and tissue enzymatic levels, around two-fold higher in homozygous D than homozygous I individuals. The mechanism underlying this quantitative difference is unknown and the hypothesis that the deletion removes a transcriptional silencer located within the intron has been proposed. METHODS: We have set up an assay based on constructs carrying fragments of intron 16, either in the I or in the D form, fused to the Herpes simplex virus thymidine kinase heterologous promoter driving the expression of the CAT reporter gene. These constructs have been used in transfection experiments in ACE expressing cells. RESULTS: Plasmids containing either intronic fragments from I and D subjects or an artificial D fragment derived from an I intron did not show significant difference between I and D in affecting the heterologous promoter activity. The finding of a yet undescribed polymorphism in intron 16 is also reported. CONCLUSION: The above results suggest that the intron 16 deletion by itself has no effect in regulating transcription in our assay system.  (+info)