Shortening of muscle relaxation time after creatine loading. (57/28646)

The effect of creatine (Cr) supplementation on muscle isometric torque generation and relaxation was investigated in healthy male volunteers. Maximal torque (Tmax), contraction time (CT) from 0.25 to 0.75 of Tmax, and relaxation time (RT) from 0.75 to 0.25 of Tmax were measured during 12 maximal isometric 3-s elbow flexions interspersed by 10-s rest intervals. Between the pretest and the posttest, subjects ingested Cr monohydrate (4 x 5 g/day; n = 8) or placebo (n = 8) for 5 days. Pretest Tmax, CT, and RT were similar in Cr and placebo groups. Also in the posttest, Tmax and CT were similar between groups. However, posttest RT was decreased consistently by approximately 20% (P < 0.05) in the Cr group from the first to the last of the 12 contractions. In addition, the mean decrease in RT after Cr loading was positively correlated with pretest RT (r = 0.82). It is concluded that Cr loading facilitates the rate of muscle relaxation during brief isometric muscle contractions without affecting torque production.  (+info)

Effects of muscle perfusion pressure on fatigue and systemic arterial pressure in human subjects. (58/28646)

The effects of changes in arterial perfusion across the physiological range on the fatigue of a working human hand muscle were studied in seven normal subjects. With the hand above heart level, subjects made repeated isometric contractions of the adductor pollicis muscle at 50% of maximal voluntary contraction in a 6-s on, 4-s off cycle. To assess fatigue, a maximal isometric twitch was elicited in each "off" period by electrical stimulation of the ulnar nerve. The experiment was repeated at least 2 days later with the hand at heart level. Five subjects showed faster fatigue with the arm elevated, and two subjects showed little difference in fatigue for the two conditions. Central blood pressure rose in proportion to fatigue for the subjects overall and returned quickly to its initial level afterwards. We conclude that human muscle fatigue can be increased by physiological reductions in perfusion pressure. Central blood pressure increases as the muscle fatigues, a response that may partially offset declining muscle performance.  (+info)

Hormone-related, muscle-specific changes in protein metabolism and fiber type profile after faba bean intake. (59/28646)

Male growing Wistar rats were fed, over 15 days, isoenergetic (16.72 +/- 0.49 MJ) and isoproteic (11%) diets containing either lactalbumin or raw Vicia faba L. (Vf) as the sole source of protein. Compared with pair-fed controls (PF), soleus muscles of Vf-fed rats showed increased (P < 0.05) synthesis and breakdown rates. In addition, the soleus of Vf-fed rats displayed a decrease (P < 0.05) in type I and an increase (P < 0.01) in type IIc fibers compared with that of PF animals. On the contrary, extensor digitorum longus muscles of both Vf-fed and PF rats showed an increase (P < 0.01) in type I and a reduction (P < 0.05) in type IIb fibers together with a decrease (P < 0.05) in the cross-sectional area of the latter fibers. Vf-fed rats exhibited a significant decrease in serum insulin (P < 0.05) and thyrotropin (P < 0.01) levels, together with an increase in plasma glucagon (P < 0.05) and 3,5,3'-triiodothyronine (P < 0.01) concentrations, compared with the PF group. Both Vf-fed and PF rats experienced an increase in corticosterone concentrations (P < 0.01 vs. control; P < 0.05 vs. PF). The muscle-specific changes in both protein metabolism and fiber type composition may partly depend on the hormonal changes that were observed after Vf intake.  (+info)

Effect of acute normovolemic hemodilution on distribution of blood flow and tissue oxygenation in dog skeletal muscle. (60/28646)

Acute normovolemic hemodilution (ANH) is efficient in reducing allogenic blood transfusion needs during elective surgery. Tissue oxygenation is maintained by increased cardiac output and oxygen extraction and, presumably, a more homogeneous tissue perfusion. The aim of this study was to investigate blood flow distribution and oxygenation of skeletal muscle. ANH from hematocrit of 36 +/- 3 to 20 +/- 1% was performed in 22 splenectomized, anesthetized beagles (17 analyzed) ventilated with room air. Normovolemia was confirmed by measurement of blood volume. Distribution of perfusion within skeletal muscle was determined by using radioactive microspheres. Tissue oxygen partial pressure was assessed with a polarographic platinum surface electrode. Cardiac index (3.69 +/- 0.79 vs. 4.79 +/- 0.73 l. min-1. m-2) and muscle perfusion (4.07 +/- 0.44 vs. 5.18 +/- 0.36 ml. 100 g-1. min-1) were increased at hematocrit of 20%. Oxygen delivery to skeletal muscle was reduced to 74% of baseline values (0.64 +/- 0.06 vs. 0.48 +/- 0.03 ml O2. 100 g-1. min-1). Nevertheless, tissue PO2 was preserved (27.4 +/- 1.3 vs. 29.9 +/- 1. 4 Torr). Heterogeneity of muscle perfusion (relative dispersion) was reduced after ANH (20.0 +/- 2.2 vs. 13.9 +/- 1.5%). We conclude that a more homogeneous distribution of perfusion is one mechanism for the preservation of tissue oxygenation after moderate ANH, despite reduced oxygen delivery.  (+info)

Age-related changes in contractile properties of single skeletal fibers from the soleus muscle. (61/28646)

Peak absolute force, specific tension (peak absolute force per cross-sectional area), cross-sectional area, maximal unloaded shortening velocity (Vo; determined by the slack test), and myosin heavy chain (MHC) isoform compositions were determined in 124 single skeletal fibers from the soleus muscle of 12-, 24-, 30-, 36-, and 37-mo-old Fischer 344 Brown Norway F1 Hybrid rats. All fibers expressed the type I MHC isoform. The mean Vo remained unchanged from 12 to 24 mo but did decrease significantly from the 24- to 30-mo time period (from 1.71 +/- 0.13 to 0.85 +/- 0.09 fiber lengths/s). Fiber cross-sectional area remained constant until 36 mo of age, at which time there was a 20% decrease from the values at 12 mo of age (from 5,558 +/- 232 to 4,339 +/- 280 micrometer2). A significant decrease in peak absolute force of single fibers occurred between 12 and 24 mo of age (from 51 +/- 2 x 10(-5) to 35 +/- 2 x 10(-5) N) and then remained constant until 36 mo, when another 43% decrease occurred. Like peak absolute force, the specific tension decreased significantly between 12 and 24 mo by 20%, and another 32% decline was observed at 37 mo. Thus, by 24 mo, there was a dissociation between the loss of fiber cross-sectional area and force. The results suggest time-specific changes of the contractile properties with aging that are independent of each other. Underlying mechanisms responsible for the time-dependent and contractile property-specific changes are unknown. Age-related changes in the molecular dynamics of myosin may be the underlying mechanism for altered force production. The presence of more than one beta/slow MHC isoform may be the mechanism for the altered Vo with age.  (+info)

Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. (62/28646)

To examine the effect of ambient temperature on metabolism during fatiguing submaximal exercise, eight men cycled to exhaustion at a workload requiring 70% peak pulmonary oxygen uptake on three separate occasions, at least 1 wk apart. These trials were conducted in ambient temperatures of 3 degrees C (CT), 20 degrees C (NT), and 40 degrees C (HT). Although no differences in muscle or rectal temperature were observed before exercise, both muscle and rectal temperature were higher (P < 0.05) at fatigue in HT compared with CT and NT. Exercise time was longer in CT compared with NT, which, in turn, was longer compared with HT (85 +/- 8 vs. 60 +/- 11 vs. 30 +/- 3 min, respectively; P < 0.05). Plasma epinephrine concentration was not different at rest or at the point of fatigue when the three trials were compared, but concentrations of this hormone were higher (P < 0.05) when HT was compared with NT, which in turn was higher (P < 0.05) compared with CT after 20 min of exercise. Muscle glycogen concentration was not different at rest when the three trials were compared but was higher at fatigue in HT compared with NT and CT, which were not different (299 +/- 33 vs. 153 +/- 27 and 116 +/- 28 mmol/kg dry wt, respectively; P < 0.01). Intramuscular lactate concentration was not different at rest when the three trials were compared but was higher (P < 0.05) at fatigue in HT compared with CT. No differences in the concentration of the total intramuscular adenine nucleotide pool (ATP + ADP + AMP), phosphocreatine, or creatine were observed before or after exercise when the trials were compared. Although intramuscular IMP concentrations were not statistically different before or after exercise when the three trials were compared, there was an exercise-induced increase (P < 0.01) in IMP. These results demonstrate that fatigue during prolonged exercise in hot conditions is not related to carbohydrate availability. Furthermore, the increased endurance in CT compared with NT is probably due to a reduced glycogenolytic rate.  (+info)

Resistance training affects GLUT-4 content in skeletal muscle of humans after 19 days of head-down bed rest. (63/28646)

This study assessed the effects of inactivity on GLUT-4 content of human skeletal muscle and evaluated resistance training as a countermeasure to inactivity-related changes in GLUT-4 content in skeletal muscle. Nine young men participated in the study. For 19 days, four control subjects remained in a -6 degrees head-down tilt at all times throughout bed rest, except for showering every other day. Five training group subjects also remained at bed rest, except during resistance training once in the morning. The resistance training consisted of 30 isometric maximal voluntary contractions for 3 s each; leg-press exercise was used to recruit the extensor muscles of the ankle, knee, and hip. Pauses (3 s) were allowed between bouts of maximal contraction. Muscle biopsy samples were obtained from the lateral aspect of vastus lateralis (VL) muscle before and after the bed rest. GLUT-4 content in VL muscle of the control group was significantly decreased after bed rest (473 +/- 48 vs. 398 +/- 66 counts. min-1. microgram membrane protein-1, before and after bed rest, respectively), whereas GLUT-4 significantly increased in the training group with bed rest (510 +/- 158 vs. 663 +/- 189 counts. min-1. microgram membrane protein-1, before and after bed rest, respectively). The present study demonstrated that GLUT-4 in VL muscle decreased by approximately 16% after 19 days of bed rest, and isometric resistance training during bed rest induced a 30% increase above the value of GLUT-4 before bed rest.  (+info)

African runners exhibit greater fatigue resistance, lower lactate accumulation, and higher oxidative enzyme activity. (64/28646)

Nine African and eight Caucasian 10-km runners resident at sea level volunteered. Maximal O2 consumption and peak treadmill velocity (PTV) were measured by using a progressive test, and fatigue resistance [time to fatigue (TTF)] was measured by using a newly developed high-intensity running test: 5 min at 72, 80, and 88% of individual PTV followed by 92% PTV to exhaustion. Skeletal muscle enzyme activities were determined in 12 runners and 12 sedentary control subjects. In a comparison of African and Caucasian runners, mean 10-km race time, maximal O2 consumption, and PTV were similar. In African runners, TTF was 21% longer (P < 0.01), plasma lactate accumulation after 5 min at 88% PTV was 38% lower (P < 0.05), and citrate synthase activity was 50% higher (27.9 +/- 7.5 vs. 18.6 +/- 2.1 micromol. g wet wt-1. min-1, P = 0.02). Africans accumulated lactate at a slower rate with increasing exercise intensity (P < 0.05). Among the entire group of runners, a higher citrate synthase activity was associated with a longer TTF (r = 0.70, P < 0.05), a lower plasma lactate accumulation (r = -0.73, P = 0.01), and a lower respiratory exchange ratio (r = -0.63, P < 0.05). We conclude that the African and Caucasian runners in the present study differed with respect to oxidative enzyme activity, rate of lactate accumulation, and their ability to sustain high-intensity endurance exercise.  (+info)