Molecular model of muscle contraction. (49/15397)

A quantitative stochastic model of the mechanochemical cycle of myosin, the protein that drives muscle contraction, is proposed. It is based on three premises: (i) the myosin head incorporates a lever arm, whose equilibrium position adjusts as each of the products of ATP hydrolysis dissociates from the nucleotide pocket; (ii) the chemical reaction rates are modified according to the work done in moving the arm; and (iii) the compliance of myosin's elastic element is designed to permit many molecules to work together efficiently. The model has a minimal number of parameters and provides an explanation, at the molecular level, of many of the mechanical and thermodynamic properties of steadily shortening muscle. In particular, the inflexion in the force-velocity curve at a force approaching the isometric load is reproduced. Moreover, the model indicates that when large numbers of myosin molecules act collectively, their chemical cycles can be synchronized, and that this leads to stepwise motion of the thin filament. The oscillatory transient response of muscle to abrupt changes of load is interpreted in this light.  (+info)

Comparison of European and North American malignant hyperthermia diagnostic protocol outcomes for use in genetic studies. (50/15397)

BACKGROUND: Halothane and caffeine diagnostic protocols and an experimental ryanodine test from the North American Malignant Hyperthermia (MH) Group (NAMHG) and the European MH Group (EMHG) have not been compared in the same persons until now. METHODS: The outcomes of the NAMHG and EMHG halothane and caffeine contracture tests were compared in 84 persons referred for diagnostic testing. In addition, the authors assessed the experimental ryanodine protocol in 50 of these persons. RESULTS: Although the NAMHG and EMHG halothane protocols are slightly different methodologically, each yielded outcomes in close (84-100%) agreement with diagnoses made by the other protocol. Excluding 23 persons judged to be equivocal (marginally positive responders) by the EMHG protocol resulted in fewer persons classified as normal and MH susceptible (42 and 19, respectively) than those classified by the NAMHG protocol (48 and 34, respectively). For the 61 persons not excluded as equivocal, the diagnoses were identical by both protocols, with the exception of one person who was diagnosed as MH susceptible by the NAMHG protocol and as "normal" by the EMHG protocol. The NAMHG protocol produced only two equivocal diagnoses. Therefore, a normal or MH diagnosis by the NAMHG protocol was frequently associated with an equivocal diagnosis by the EMHG protocol. The time to 0.2-g contracture after the addition of 1 microM ryanodine completely separated populations, which was in agreement with the EMHG protocol and, except for one person, with the NAMHG protocol. CONCLUSIONS: Overall, the NAMHG and EMHG protocols and the experimental ryanodine test yielded similar diagnoses. The EMHG protocol reduced the number of marginal responders in the final analysis, which may make the remaining diagnoses slightly more accurate for use in genetic studies.  (+info)

Evolution of contractile and elastic properties of rat soleus muscle fibres under unloading conditions. (51/15397)

Rats were submitted to 14 days of hindlimb suspension in order to examine the contractile and elastic properties of the soleus muscles under disuse conditions. The calcium/strontium activation properties, the maximal shortening velocity (V0), as well as the time behaviour of force transients following quick releases and the T1 curves characterizing the active part of the series elastic elements, were determined on single chemically skinned fibres. After the functional measurements, the fibres were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in order to analyse both the myosin heavy (MHC) and light (MLC) chain isoforms. According to the MHC and MLC composition, two groups of fibres were defined after hindlimb suspension: a group of slow fibres expressing the slow set of both MHC and MLC isoforms, and a group of fast fibres co-expressing the slow and fast MHC and MLC isoforms with a predominant expression of the fast ones. For the first group, the contractile as well as the elastic properties were found to be close to those of control slow soleus fibres. For the second group, both contractile and elastic properties were modified insofar as they became close to those found in a fast muscle such as the extensor digitorum longus. We suggested that between the two populations found in the soleus muscle after hindlimb suspension the modifications in the contractile properties, as well as the alterations in the elastic characteristics, were concomitant to the changes in both MHC and MLC compositions.  (+info)

The effect of motilin on the regulation mechanism of intestinal motility in conscious horses. (52/15397)

Laparotomy was performed on seven thoroughbreds to attach a force transducer to the proximal jejunum, distal jejunum, and ileum, as well as to the serous membrane of the cecum. Following observation of intestinal motility in conscious horses, they were intravenously injected with motilin (0.6 microgram/kg) to examine its effect on intestinal motility. Strong contractions peculiar to horses were observed in small intestine. Further, motilin caused strong contractions in the proximal jejunum. The results suggested the involvement of motilin in the regulation mechanism of intestinal motility.  (+info)

In vivo microdialysis assessment of nerve-stimulated contractions associated with increased acetylcholine release in the dog intestine. (53/15397)

Intestinal contractility and release of endogenous acetylcholine (ACh) were measured simultaneously in vivo in the small intestine of the anesthetized dog. Electrical stimulation of nerves in the intestinal seromuscular layers caused contractions and increased concentrations of ACh in the dialysate, which were abolished by infusion of tetrodotoxin into the intestinal marginal artery at 75 nmol/ml. Intraarterial administration of atropine at 150 nmol/ml abolished the stimulated contractions, without significant effects on increases in concentrations of dialysate ACh. Thus, the nerve-stimulated contractions were found in vivo to be associated with a local increase in ACh release from the intestinal cholinergic neurons.  (+info)

Mitogen-activated protein/extracellular signal-regulated kinase inhibition attenuates angiotensin II-mediated signaling and contraction in spontaneously hypertensive rat vascular smooth muscle cells. (54/15397)

This study investigates the role of extracellular signal-regulated kinases (ERKs) in angiotensin II (Ang II)-generated intracellular second messengers (cytosolic free Ca2+ concentration, ie, [Ca2+]i, and pHi) and in contraction in isolated vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY) using the selective mitogen-activated protein (MAP)/ERK inhibitor, PD98059. VSMCs from mesenteric arteries were cultured on Matrigel basement membrane matrix. These cells, which exhibit a contractile phenotype, were used to measure [Ca2+]i, pHi, and contractile responses to Ang II (10(-12) to 10(-6) mol/L) in the absence and presence of PD98059 (10(-5) mol/L). [Ca2+]i and pHi were measured by fura-2 and BCECF methodology, respectively, and contraction was determined by photomicroscopy. Ang II-stimulated ERK activity was measured by Western blot analysis using a phospho-specific ERK-1/ERK-2 antibody and by an MAPK enzyme assay. Ang II increased [Ca2+]i and pHi and contracted cells in a dose-dependent manner. Maximum Ang II-elicited contraction was greater (P<0.05) in SHR (41.9+/-5.1% reduction in cell length relative to basal length) than in WKY (28.1+/-3.0% reduction in cell length relative to basal length). Basal [Ca2+]i, but not basal pHi, was higher in SHR compared with WKY. [Ca2+]i and pHi effects of Ang II were enhanced (P<0.05) in SHR compared with WKY (maximum Ang II-induced response [Emax] of [Ca2+]i, 576+/-24 versus 413+/-43 nmol/L; Emax of pHi, 7.33+/-0.01 versus 7.27+/-0.03, SHR versus WKY). PD98059 decreased the magnitude of contraction and attenuated the augmented Ang II-elicited contractile responses in SHR (Emax,19. 3+/-3% reduction in cell length relative to basal length). Ang II-stimulated [Ca2+]i (Emax, 294+/-55 nmol/L) and pHi (Emax, 7. 27+/-0.04) effects were significantly reduced by PD98059 in SHR. Ang II-induced ERK activity was significantly greater (P<0.05) in SHR than in WKY. In conclusion, Ang II-stimulated signal transduction and associated VSMC contraction are enhanced in SHR. MAP/ERK inhibition abrogated sustained contraction and normalized Ang II effects in SHR. These data suggest that ERK-dependent signaling pathways influence contraction and that they play a role in vascular hyperresponsiveness in SHR.  (+info)

Amphidinolide B, a powerful activator of actomyosin ATPase enhances skeletal muscle contraction. (55/15397)

Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  (+info)

Modulation of calcium mobilization in aortic rings of pregnant rats: Contribution of extracellular calcium and of voltage-operated calcium channels. (56/15397)

Pregnancy is associated with decreased vascular responsiveness to vasopressor stimuli. We have tested the involvement of Ca2+ mobilization in myotropic responses of aortic rings obtained from pregnant and virgin rats. Contractions of the rings to phenylephrine, in the absence of calcium in the bathing medium, were lower in tissues from virgin than from pregnant rats. Concentration-response curves to CaCl2 that were measured after stimulation by phenylephrine in the absence of Ca2+ were shifted to higher levels of contraction. This was not observed when KCl was used to prestimulate the aorta. D-600, a phenylalkylamine calcium channel blocker, similarly inhibited these responses to CaCl2 in tissues from both pregnant and virgin animals. D-600 exerted a concentration-dependent inhibition of responses to phenylephrine and KCl. However, the calcium antagonist was less effective in aortic rings of pregnant than of virgin rats. Basal 45Ca2+ uptake was lower in aortic rings from pregnant than from virgin rats, and Bay K 8644 was unable to reverse this difference. The time course of basal and stimulated (KCl) 45Ca2+ influx was lower in aorta of pregnant rats at all times studied. Moreover, when the intracellular calcium pools were emptied with phenylephrine, the refilling of these pools was delayed in aortic rings of pregnant rats. These results indicate an altered extracellular calcium mobilization of aortic rings from pregnant rats. These changes may be due to a functional alteration of the voltage-operated calcium channels during pregnancy.  (+info)