Phosphoglucose isomerase from bananas: partial characterization and relation to main changes in carbohydrate composition during ripening. (1/166)

Some characteristics of phosphoglucose isomerase (PGI, EC from banana were measured during fruit ripening of three banana cultivars. In banana, PGI was present as two dimeric isoenzymes, named PGI1 and PGI2, which had similar native molecular masses but differed in relation to heat stability and isoelectric point. Total PGI activity showed a distinct two-step change during fruit ripening. Before the climacteric period, PGI activity gradually decreased with the starch content, then its activity began to increase with sucrose accumulation. The ratio of PGI1, and PGI2 was constant, indicating that both enzymes would be involved in starch degradation and sucrose synthesis. PGI activity and changes in carbohydrate composition suggests the existence of some control to fit the requirements of the intense carbon flow from starch to sucrose.  (+info)

Number, position, diameter and initial direction of growth of primary roots in Musa. (2/166)

To understand soil colonization by a root system, information is needed on the architecture of the root system. In monocotyledons, soil exploration is mainly due to the growth of adventitious primary roots. Primary root emergence in banana was quantified in relation to shoot and corm development. Root emergence kinetics were closely related to the development of aerial organs. Root position at emergence on the corm followed an asymptotic function of corm dry weight, so that the age of each root at a given time could be deduced from its position. Root diameter at emergence was related to the position of the roots on the corm, with younger roots being thicker than older ones. However, root diameters were not constant along a given root, but instead decreased with the distance to the base; roots appear to be conical in their basal and apical parts. Root growth directions at emergence were variable, but a high proportion of the primary roots emerged with a low angle to the horizontal. Further research is needed to evaluate whether these initial trajectories are conserved during root development. Results presented in this study are in good agreement with those reported for other monocotyledons such as maize and rice. They give quantitative information that will facilitate the development of models of root system architecture in banana.  (+info)

Estimation of whole-plant transpiration of bananas using sap flow measurements. (3/166)

Banana, one of the largest rhizomatous herbs in the world, is the fourth most important global food crop. It has a high water requirement, but the whole-plant water use in the field has not been determined satisfactorily. In this study, whole-plant water use in potted and field-grown banana plants (Musa 'Cavendish' cv. Williams) was successfully determined using a xylem sap flow method. This was achieved using Granier sensor probes implanted into the central cylinder of the banana corm. The whole-plant water use in field-grown bananas was 9-10 l plant(-1) d(-1). The values of daily total sap flow in potted plants correlated closely with gravimetric measurements (r(2)=0.92) and with changes in soil water status (r(2)=0.77). In well-watered, mature, field-grown plants, hourly sap flow also closely correlated with changes in solar radiation, vapour pressure deficit and evapotranspiration. The study indicates that sap flow measurement is a sensitive and accurate method for determining whole-plant water use in bananas under potted as well as field conditions.  (+info)

Assessment of the validity of the sections in Musa (musaceae) using AFLP. (4/166)

Musa L. (Musaceae) is currently separated into five sections (Musa. Rhodochlamys, Callimusa, Australimusa and Ingentimusa) based on chromosome numbers and morphological characters. However, the validation of this classification system is questioned due to the common occurrence of hybridizations across sections and the system not accommodating anomalous species. This study employed amplified fragment length polymorphism (AFLP) in a phenetic examination of the relationships among four sections (material of sect. Ingentimusa was not available) to evaluate whether their genetic differences justify distinction into separate groups. Using eight primer combinations, a total of 276 bands was scored, of which 275 were polymorphic. Among the monomorphic bands, 11 unique markers were identified that revealed the distinct separation of the 11-chromosome species from the 10-chromosome species. AFLP results suggest that species of sect. Rhodochlamys should be combined into a single section with species of sect. Musa, and likewise for species of sect. Australimnusa to be merged with those of sect. Callimusa.  (+info)

The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. (5/166)

Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a beta-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas.  (+info)

Malate synthase gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Williams). (6/166)

Malate synthase (MS) is a key enzyme responsible for malic acid synthesis in the glyoxylate cycle, which functions to convert stored lipids to carbohydrates, by catalysing the glyoxylate condensation reaction with acetyl-CoA in the peroxisome. In this study, the cloning of an MS cDNA, designated MaMS-1, from the banana fruit is reported. MaMS-1 was 1801 bp in length encoding a single polypeptide of 556 amino acid residues. Sequence analysis revealed that MaMS-1 possessed the conserved catalytic domain and a putative peroxisomal targeting signal SK(I/L) at the carboxyl terminal. MaMS-1 also shared an extensive sequence homology (79-81.3%) with other plant MS homologues. Southern analysis indicated that MS might be present as multiple members in the banana genome. In Northern analysis, MaMS-1 was expressed specifically in ripening fruit tissue and transcripts were not detected in other organs such as roots, pseudostem, leaves, ovary, male flower, and in fruit at different stages of development. However, the transcript abundance in fruit was affected by stage of ripening, during which transcript was barely detectable at the early stage of ripening (FG and TY), but the level increased markedly in MG and in other fruits at advanced ripening stages. Furthermore, MaMS-1 expression in FG fruit could be stimulated by treatment with 1 microl l(-1) exogenous ethylene, but the stimulatory effect was abolished by the application of an ethylene inhibitor, norbornadiene. Results of this study clearly show that MS expression in banana fruit is temporally regulated during ripening and is ethylene-inducible.  (+info)

Absorption and retinol equivalence of beta-carotene in humans is influenced by dietary vitamin A intake. (7/166)

The effect of vitamin A supplements on metabolic behavior of an oral tracer dose of [14C]beta-carotene was investigated in a longitudinal test-retest design in two adults. For the test, each subject ingested 1 nmol of [14C]beta-carotene (100 nCi) in an emulsified olive oil-banana drink. Total urine and stool were collected for up to 30 days; concentration-time patterns of [14C]beta-carotene, [14C]retinyl esters, and [14C]retinol were determined for 46 days. On Day 53, the subjects were placed on a daily vitamin A supplement (10000 IU/day), and a second dose of [14C]beta-carotene (retest) was given on Day 74. All 14C determinations were made using accelerator mass spectrometry. In both subjects, the vitamin A supplementation was associated with three main effects: 1). increased apparent absorption: test versus retest values rose from 57% to 74% (Subject 1) and from 52% to 75% (Subject 2); 2). an approximately 10-fold reduction in urinary excretion; and 3). a lower ratio of labeled retinyl ester/beta-carotene concentrations in the absorptive phase. The molar vitamin A value of the dose for the test was 0.62 mol (Subject 1) and 0.54 mol (Subject 2) vitamin A to 1 mol beta-carotene. Respective values for the retest were 0.85 and 0.74. These results show that while less cleavage of beta-carotene occurred due to vitamin A supplementation, higher absorption resulted in larger molar vitamin A values.  (+info)

Origins of agriculture at Kuk Swamp in the highlands of New Guinea. (8/166)

Multidisciplinary investigations at Kuk Swamp in the Highlands of Papua New Guinea show that agriculture arose independently in New Guinea by at least 6950 to 6440 calibrated years before the present (cal yr B.P.). Plant exploitation and some cultivation occurred on the wetland margin at 10,220 to 9910 cal yr B.P. (phase 1), mounding cultivation began by 6950 to 6440 cal yr B.P. (phase 2), and ditched cultivation began by 4350 to 3980 cal yr B.P. (phase 3). Clearance of lower montane rainforests began in the early Holocene, with modification to grassland at 6950 to 6440 cal yr B.P. Taro (Colocasia esculenta) was utilized in the early Holocene, and bananas (Musa spp.) were intensively cultivated by at least 6950 to 6440 cal yr B.P.  (+info)