Immune response to the immunodominant epitope of mouse hepatitis virus is polyclonal, but functionally monospecific in C57Bl/6 mice. (1/771)

Mutations in an immunodominant CD8 CTL epitope (S-510-518) are selected in mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus. These mutations abrogate recognition by T cells harvested from the infected CNS in direct ex vivo cytotoxicity assays. Previous reports have suggested that, in general, an oligoclonal, monospecific T cell response contributes to the selection of CTL escape mutants. Herein, we show that, in MHV-JHM-infected mice, the CD8 T cell response after intraperitoneal infection is polyclonal and diverse. This diverse response was shown to include both polyclonal and oligoclonal components. The polyclonal data were shown to fit a logarithmic distribution. With regard to specificity, we used a panel of peptide analogues of epitope S-510-518 and spleen-derived CD8 T cell lines to determine why only a subset of possible mutations was selected in persistently infected mice. At a given position in the epitope, the mutations identified in in vivo isolates were among those that resulted in the greatest loss of recognition. However, not all such mutations were selected, suggesting that additional factors must contribute to selection in vivo. By extrapolation of these results to the persistently infected CNS, they suggest that the selection of CTL escape mutants requires the presence of a monospecific T cell response but also show that this response need not be oligoclonal.  (+info)

Application of nested polymerase chain reaction to detection of mouse hepatitis virus in fecal specimens during a natural outbreak in an immunodeficient mouse colony. (2/771)

The usefulness of RT-PCR for the detection of MHV in tissues and feces of experimentally infected animals has been reported, but it was unclear whether the method was also applicable for the detection of MHV during a natural outbreak. Enterotropic infection is considered to be the most common form of natural infection among various forms of MHV infection. In this paper, RT-nested PCR was performed to detect MHV excreted in the feces during an outbreak in an immunocompromised A/WySnJ mouse colony. The expected bands were amplified after nested PCR from 20 fecal samples out of 37. These results showed that RT-nested PCR could be applicable for the diagnosis for MHV natural infection.  (+info)

The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. (3/771)

Using a set of parental and recombinant murine hepatitis virus strains, we demonstrate that the nucleocapsid protein induces transcription of the novel fgl2 prothrombinase gene and elevated procoagulant activity in those strains that produce fulminant hepatitis. Chinese hamster ovary cells cotransfected with a construct expressing nucleocapsid protein from susceptible strains and with a luciferase reporter construct containing the fgl2 promoter showed a 6-fold increase in luciferase activity compared with nontransfected cells or cells cotransfected with a construct expressing nucleocapsid protein from resistant strains. Two deletions found at coding sites 111-123 and 1143-1145 of structural domains I and III, respectively, of the nucleocapsid gene may account for the differences between pathogenic and nonpathogenic strains. Preliminary mapping of the fgl2 promoter has defined a region from -372 to -306 upstream from the ATG translation initiation site to be responsive to nucleocapsid protein. Hence, mapping of genetic determinants in parental and recombinant strains demonstrates that the nucleocapsid protein of strains that induce fulminant hepatitis is responsible for transcription of the fgl2 prothrombinase gene. These studies provide new insights into the role of the nucleocapsid gene in the pathogenesis of viral hepatitis.  (+info)

Selection of CD8+ T cells with highly focused specificity during viral persistence in the central nervous system. (4/771)

The relationships between T cell populations during primary viral infection and persistence are poorly understood. Mice infected with the neurotropic JHMV strain of mouse hepatitis virus mount potent regional CTL responses that effectively reduce infectious virus; nevertheless, viral RNA persists in the central nervous system (CNS). To evaluate whether persistence influences Ag-specific CD8+ T cells, functional TCR diversity was studied in spleen and CNS-derived CTL populations based on differential recognition of variant peptides for the dominant nucleocapsid epitope. Increased specificity of peripheral CTL from persistently infected mice for the index epitope compared with immunized mice suggested T cell selection during persistence. This was confirmed with CD8+ T cell clones derived from the CNS of either acutely (CTLac) or persistently (CTLper) infected mice. Whereas CTLac clones recognized a broad diversity of amino acid substitutions, CTLper clones exhibited exquisite specificity for the wild-type sequence. Highly focused specificity was CD8 independent but correlated with longer complementarity-determining regions 3 characteristic of CTLper clonotypes despite limited TCR alpha/beta-chain heterogeneity. Direct ex vivo analysis of CNS-derived mononuclear cells by IFN-gamma enzyme-linked immunospot assay confirmed the selection of T cells with narrow Ag specificity during persistence at the population level. These data suggest that broadly reactive CTL during primary infection are capable of controlling potentially emerging mutations. By contrast, the predominance of CD8+ T cells with dramatically focused specificity during persistence at the site of infection and in the periphery supports selective pressure driven by persisting Ag.  (+info)

Interference of natural mouse hepatitis virus infection with cytokine production and susceptibility to Trypanosoma cruzi. (5/771)

Mouse hepatitis virus (MHV) infection can have a pronounced impact on several investigation areas. Reports on natural MHV outbreaks are rare and most studies have been conducted by deliberately infecting mice with MHV laboratory strains that cause moderate to severe disturbances to the immune system. We have investigated the effects of a natural acute outbreak of MHV in our otherwise specific-pathogen-free (SPF) inbred mouse colonies, and of enzootic chronic MHV infection on cytokine production and resistance to the intracellular pathogen Trypanosoma cruzi. We found that BALB/c and/or C57BL/6 SPF mice that had been injected with T. cruzi blood trypomastigotes from recently MHV-contaminated (MHV+) mice developed significantly higher parasite blood counts, accelerated death, and showed higher IL-10 production by spleen cells than their counterparts whose T. cruzi inoculum was derived from MHV-negative (MHV-) donors. Interferon-gamma (IFN-gamma) production by MHV+ and MHV- mice was not significantly different. In contrast, T. cruzi infection of chronically MHV-infected mice did not result in major changes in the course of infection when compared with that observed in mice from MHV- colonies, although a trend to higher parasitaemia levels was observed in BALB/c MHV+ mice. Nevertheless, both BALB/c and C57BL/6 T. cruzi-infected MHV+ mice had diminished IFN-gamma production to parasite-antigen stimulation in comparison with similarly infected MHV- mice. Interleukin-10 (IL-10) production levels by spleen cells did not differ between chronic MHV+ and MHV- mice, but IFN-gamma neutralization by monoclonal antibody treatment of anti-CD3-stimulated spleen cell cultures showed higher levels of IL-10 synthesis in MHV+ BALB/c mice.  (+info)

The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. (6/771)

By comparative analysis of the hemagglutinin-esterase (HE) protein of mouse hepatitis virus strain S (MHV-S) and the HE protein of influenza C virus, we found major differences in substrate specificities. In striking contrast to the influenza C virus enzyme, the MHV-S esterase was unable to release acetate from bovine submandibulary gland mucin. Furthermore, MHV-S could not remove influenza C virus receptors from erythrocytes. Analysis with free sialic acid derivatives revealed that the MHV-S HE protein specifically de-O-acetylates 5-N-acetyl-4-O-acetyl sialic acid (Neu4, 5Ac2) but not 5-N-acetyl-9-O-acetyl sialic acid (Neu5,9Ac2), which is the major substrate for esterases of influenza C virus and bovine coronaviruses. In addition, the MHV-S esterase converted glycosidically bound Neu4,5Ac2 of guinea pig serum glycoproteins to Neu5Ac. By expression of the MHV esterase with recombinant vaccinia virus and incubation with guinea pig serum, we demonstrated that the viral HE possesses sialate-4-O-acetylesterase activity. In addition to observed enzymatic activity, MHV-S exhibited affinity to guinea pig and horse serum glycoproteins. Binding required sialate-4-O-acetyl groups and was abolished by chemical de-O-acetylation. Since Neu4,5Ac2 has not been identified in mice, the nature of potential substrates and/or secondary receptors for MHV-S in the natural host remains to be determined. The esterase of MHV-S is the first example of a viral enzyme with high specificity and affinity toward 4-O-acetylated sialic acids.  (+info)

Antibody prevents virus reactivation within the central nervous system. (7/771)

The neurotropic JHM strain of mouse hepatitis virus (JHMV) produces an acute CNS infection characterized by encephalomyelitis and demyelination. The immune response cannot completely eliminate virus, resulting in persistence associated with chronic ongoing CNS demyelination. The contribution of humoral immunity to viral clearance and persistent infection was investigated in mice homozygous for disruption of the Ig mu gene (IgM-/-). Acute disease developed with equal kinetics and severity in IgM-/- and syngeneic C57BL/6 (wt) mice. However, clinical disease progressed in IgM-/- mice, while wt mice recovered. Viral clearance during acute infection was similar in both groups, supporting a primary role of cell-mediated immunity in viral clearance. In contrast to wt mice, in which infectious virus was reduced to below detection following acute infection, increasing infectious virus was recovered from the CNS of the IgM-/- mice following initial clearance. No evidence was obtained for selection of variant viruses nor was there an apparent loss of cell-mediated immunity in the absence of Ab. Passive transfer of anti-JHMV Ab following initial clearance prevented reactivation of infectious virus within the CNS of IgM-/- mice. These data demonstrate the clearance of infectious virus during acute disease by cell-mediated immunity. However, immunologic control is not maintained in the absence of anti-viral Ab, resulting in recrudescence of infectious virus. These data suggest that humoral immunity plays no role in controlling virus during acute infection, but plays an important role in establishing and maintaining CNS viral persistence.  (+info)

Colocalization and membrane association of murine hepatitis virus gene 1 products and De novo-synthesized viral RNA in infected cells. (8/771)

Murine hepatitis virus (MHV) gene 1, the 22-kb polymerase (pol) gene, is first translated into a polyprotein and subsequently processed into multiple proteins by viral autoproteases. Genetic complementation analyses suggest that the majority of the gene 1 products are required for viral RNA synthesis. However, there is no physical evidence supporting the association of any of these products with viral RNA synthesis. We have now performed immunofluorescent-staining studies with four polyclonal antisera to localize various MHV-A59 gene 1 products in virus-infected cells. Immunoprecipitation experiments showed that these antisera detected proteins representing the two papain-like proteases and the 3C-like protease encoded by open reading frame (ORF) 1a, the putative polymerase (p100) and a p35 encoded by ORF 1b, and their precursors. De novo-synthesized viral RNA was labeled with bromouridine triphosphate in lysolecithin-permeabilized MHV-infected cells. Confocal microscopy revealed that all of the viral proteins detected by these antisera colocalized with newly synthesized viral RNA in the cytoplasm, particularly in the perinuclear region of infected cells. Several cysteine and serine protease inhibitors, i.e., E64d, leupeptin, and zinc chloride, inhibited viral RNA synthesis without affecting the localization of viral proteins, suggesting that the processing of the MHV gene 1 polyprotein is tightly associated with viral RNA synthesis. Dual labeling with antibodies specific for cytoplasmic membrane structures showed that MHV gene 1 products and RNA colocalized with the Golgi apparatus in HeLa cells. However, in murine 17CL-1 cells, the viral proteins and viral RNA did not colocalize with the Golgi apparatus but, instead, partially colocalized with the endoplasmic reticulum. Our results provide clear physical evidence that several MHV gene 1 products, including the proteases and the polymerase, are associated with the viral RNA replication-transcription machinery, which may localize to different membrane structures in different cell lines.  (+info)