Identification of a cell surface protein from Crandell feline kidney cells that specifically binds Aleutian mink disease parvovirus. (9/548)

Aleutian mink disease parvovirus (ADV) is the etiological agent of Aleutian disease of mink. The acute disease caused by ADV consists of permissive infection of alveolar type II cells that results in interstitial pneumonitis. The permissive infection is experimentally modeled in vitro by infecting Crandell feline kidney (CrFK) cells with a tissue culture-adapted isolate of ADV, ADV-G. ADV-G VP2 empty virions expressed in a recombinant baculovirus system were analyzed for the ability to bind to the surface of CrFK cells. Radiolabeled VP2 virions bound CrFK cells specifically, while they did not bind either Mus dunni or Spodoptera frugiperda cells, cells which are resistant to ADV infection. The binding to CrFK cells was competitively inhibited by VP2 virions but not by virions of cowpea chlorotic mottle virus (CCMV), another unenveloped virus similar in size to ADV. Furthermore, preincubation of CrFK cells with the VP2 virions blocked infection by ADV-G. The VP2 virions were used in a virus overlay protein binding assay to identify a single protein of approximately 67 kDa, named ABP (for ADV binding protein), that demonstrates specific binding of VP2 virions. Exogenously added VP2 virions were able to competitively inhibit the binding of labeled VP2 virions to ABP, while CCMV virions had no effect. Polyclonal antibodies raised against ABP reacted with ABP on the outer surface of CrFK cells and blocked infection of CrFK cells by ADV-G. In addition, VP2 virion attachment to CrFK cells was blocked when the VP2 virions were preincubated with partially purified ABP. Taken together, these results indicate that ABP is a cellular receptor for ADV.  (+info)

Structures of endogenous nonecotropic murine leukemia virus (MLV) long terminal repeats in wild mice: implication for evolution of MLVs. (10/548)

To develop a better understanding of the interaction between retroviruses and their hosts, we have investigated the polymorphism in endogenous murine leukemia proviruses (MLVs). We used genomic libraries of wild mouse DNAs and PCR to analyze genetic variation in the proviruses found in wild mouse species, including Mus musculus (M. m. castaneus, M. m. musculus, M. m. molossinus, and M. m. domesticus), Mus spretus, and Mus spicelegus, as well as some inbred laboratory strains. In this analysis, we detected several unique forms of sequence organization in the U3 regions of the long terminal repeats of these proviruses. The distribution of the proviruses with unique U3 structures demonstrated that xenotropic MLV-related proviruses were present only in M. musculus subspecies, while polytropic MLV-related proviruses were found in both M. musculus and M. spretus. Furthermore, one unique provirus from M. spicelegus was found to be equidistant from ecotropic provirus and nonecotropic provirus by phylogenetic analysis. This provirus, termed HEMV, was thus likely to be related to the common ancestor of these MLVs. Moreover, an ancestral type of polytropic MLV-related provirus was detected in M. spretus species. Despite their "ancestral" phylogenetic position, proviruses of these types are not widespread in mice, implying more-recent spread by infection rather than inheritance. These results imply that recent evolution of these proviruses involved alternating periods of replication as virus and residence in the germ line.  (+info)

Genospecies diversity of Lyme disease spirochetes in rodent reservoirs. (11/548)

To determine whether particular Borrelia burgdorferi s.l. genospecies associate solely with rodent reservoir hosts, we compared the genospecies prevalence in questing nymphal Ixodes ticks with that in xenodiagnostic ticks that had fed as larvae on rodents captured in the same site. No genospecies was more prevalent in rodent-fed ticks than in questing ticks. The three main spirochete genospecies, therefore, share common rodent hosts.  (+info)

Mouse p73 gene maps to the distal part of chromosome 4 and might be involved in the progression of gamma-radiation-induced T-cell lymphomas. (12/548)

We have isolated and sequenced a DNA fragment of about 12 kb that comprises exons 5-14 of the mouse p73 gene. We have identified four polymorphic markers, and one of them has been used to genetically map p73 to the distal part of chromosome 4. Previously, we have reported that gamma-radiation-induced T-cell lymphomas undergo frequent loss of heterozygosity around marker D4Mit205b at the distal part of chromosome 4. Based on this, we have performed loss of heterozygosity analysis in a set of T-cell lymphomas, and we have found allelic losses of p73 in 32.6% (16 of 49) of the tumors analyzed. Interestingly, allelic losses occur concurrently at both p73 and D4Mit205b, thus suggesting that p73 could be specifically inactivated in radiation-induced T-cell lymphomas.  (+info)

Evolutionarily conserved structural features in the ITS2 of mammalian pre-rRNAs and potential interactions with the snoRNA U8 detected by comparative analysis of new mouse sequences. (13/548)

Mechanisms of ITS2 excision from pre-rRNA remain largely elusive. In mammals, at least two endonucleolytic cleavages are involved, which result in the transient accumulation of precursors to 5.8S rRNA termed 8S and 12S RNAs. We have sequenced ITS2 in four new species of the Mus genus and investigated its secondary structure using thermodynamic prediction and comparative approach. Phylogenetic evidence supports an ITS2 folding organized in four domains of secondary structure extending from a preserved structural core. This folding is also largely conserved for the previously available mammalian ITS2 sequences, rat and human, despite their extensive sequence divergence relative to the Mus species. Conserved structural features include the structural core, containing the 3' end of 8S pre-rRNA within a single-stranded sequence, and a stem containing the 3' end of the 12S pre-rRNA species. A putative, phylogenetically preserved pseudoknot has been detected 1 nt downstream from the 12S 3' end. Two long complementarities have also been identified, in sequences conserved among vertebrates, between the pre-rRNA 32S and the snoRNA (small nucleolar RNA) U8 which is required for the excision of Xenopus ITS2. The first complementarity involves the 5.8S-ITS2 junction and 13 nt at the 5' end of U8, whereas the other one occurs between a mature 28S rRNA segment known to be required for ITS2 excision and positions 15-25 of snoRNA U8. These two potential interactions, in combination with ITS2 folding, could organize a functional pocket containing three cleavage sites and key elements for pre-rRNA processing, suggesting a chaperone role for the snoRNA U8.  (+info)

Short day length alone does not inhibit spermatogenesis in the seasonally breeding four-striped field mouse (Rhabdomys pumilio). (14/548)

This study was an examination of the effect of photoperiod on spermatogenesis and the accessory glands of the four-striped field mouse (Rhabdomys pumilio), a seasonally breeding rodent that occurs through Southern Africa. Adult scrotal males were exposed to either short day length (10L:14D), long day length (14L:10D), or natural photoperiod in constant-environment rooms (25 degrees C, 41% humidity; food and water ad libitum) for 8 wk in late summer, when males in the wild were spermatogenically active, and in mid-winter, when they were inactive. In neither experiment did prolonged exposure to short day length or naturally decreasing day length inhibit spermatogenic activity, and we conclude that the normal cessation of spermatogenesis that occurs in most male four-striped field mice in winter is not stimulated by day length alone.  (+info)

T-STAR/ETOILE: a novel relative of SAM68 that interacts with an RNA-binding protein implicated in spermatogenesis. (15/548)

RBM is an RNA-binding protein encoded on the Y chromosome in mammals and is expressed only in the nuclei of male germ cells. Genetic evidence from infertile men implicates it in spermatogenesis, but its function is unknown. Of a number of potential partners for RBM identified by a yeast two-hybrid screen with testis cDNA, the most frequent isolates encoded a novel RNA-binding protein, termed T-STAR, that is closely related to SAM68, an Src-associated protein of unknown function. The mouse homologue was also cloned and designated etoile. It mapped to chromosome 15, while T-STAR mapped to the syntenic region on human chromosome 8. T-STAR/etoile is expressed primarily in the testis; in rat germ cells, the expression of both T-STAR/etoile and SAM68 is regulated during meiosis. Transfection of T-STAR/etoile fused with green fluorescent protein into HeLa cells caused an accumulation of protein in a novel compartment of the nucleus, adjacent to the nucleolus but distinct from the peri-nucleolar compartment. RBM and other hnRNP G family members are candidate downstream targets for regulation by T-STAR/ETOILE and SAM68.  (+info)

Adaptation in the vertebral column: a comparative study of patterns of metameric variation in seven species of small mammals. (16/548)

The pattern of variation of certain vertebral measurements along the vertebral column is known to differ in man and mouse. This paper investigates changes in this pattern in 7 species of small mammals and attempts to correlate them with locomotor adaptations and limb dimensions.  (+info)