Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: implications for platelet secretion. (1/322)

In response to thrombin and other extracellular activators, platelets secrete molecules from large intracellular vesicles (granules) to initiate thrombosis. Little is known about the molecular machinery responsible for vesicle docking and secretion in platelets and the linkage of that machinery to cell activation. We found that platelet membranes contain a full complement of interacting proteins-VAMP, SNAP-25, and syntaxin 4-that are necessary for vesicle docking and fusion with the plasma membrane. Platelets also contain an uncharacterized homologue of the Sec1p family that appears to regulate vesicle docking through its binding with a cognate syntaxin. This platelet Sec1 protein (PSP) bound to syntaxin 4 and thereby excluded the binding of SNAP-25 with syntaxin 4, an interaction critical to vesicle docking. As predicted by its sequence, PSP was detected predominantly in the platelet cytosol and was phosphorylated in vitro by protein kinase C (PKC), a secretion-linked kinase, incorporating 0.87 +/- 0.11 mol of PO4 per mole of protein. PSP was also specifically phosphorylated in permeabilized platelets after cellular stimulation by phorbol esters or thrombin and this phosphorylation was blocked by the PKC inhibitor Ro-31-8220. Phosphorylation by PKC in vitro inhibited PSP from binding to syntaxin 4. Taken together, these studies indicate that platelets, like neurons and other cells capable of regulated secretion, contain a unique complement of interacting vesicle docking proteins and PSP, a putative regulator of vesicle docking. The PKC-dependent phosphorylation of PSP in activated platelets and its inhibitory effects on syntaxin 4 binding provide a novel functional link that may be important in coupling the processes of cell activation, intracellular signaling, and secretion.  (+info)

Blockade of membrane transport and disassembly of the Golgi complex by expression of syntaxin 1A in neurosecretion-incompetent cells: prevention by rbSEC1. (2/322)

The t-SNAREs syntaxin1A and SNAP-25, i.e. the members of the complex involved in regulated exocytosis at synapses and neurosecretory cells, are delivered to their physiological site, the plasma membrane, when transfected into neurosecretion-competent cells, such as PC12 and AtT20. In contrast, when transfection is made into cells incompetent for neurosecretion, such as those of a defective PC12 clone and the NRK fibroblasts, which have no endogenous expression of these t-SNAREs, syntaxin1A (but neither two other syntaxin family members nor SNAP-25) remains stuck in the Golgi-TGN area with profound consequences to the cell: blockade of both membrane (SNAP-25, GAT-1) and secretory (chromogranin B) protein transport to the cell surface; progressive disassembly of the Golgi complex and TGN; ultimate disappearance of the latter structures, with intermixing of their markers (mannosidase II; TGN-38) with those of the endoplasmic reticulum (calreticulin) and with syntaxin1A itself. When, however, syntaxin 1A is transfected together with rbSec1, a protein known to participate in neurosecretory exocytosis via its dynamic interaction with the t-SNARE, neither the blockade nor the alterations of the Golgi complex take place. Our results demonstrate that syntaxin1A, in addition to its role in exocytosis at the cell surface, possesses a specific potential to interfere with intracellular membrane transport and that its interaction with rbSec1 is instrumental to its physiological function not only at the plasma membrane but also within the cell. At the latter site, the rbSec1-induced conversion of syntaxin1A into a form that can be transported and protects the cell from the development of severe structural and membrane traffic alterations.  (+info)

The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. (3/322)

Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein-protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex.  (+info)

Sec1p binds to SNARE complexes and concentrates at sites of secretion. (4/322)

Proteins of the Sec1 family have been shown to interact with target-membrane t-SNAREs that are homologous to the neuronal protein syntaxin. We demonstrate that yeast Sec1p coprecipitates not only the syntaxin homologue Ssop, but also the other two exocytic SNAREs (Sec9p and Sncp) in amounts and in proportions characteristic of SNARE complexes in yeast lysates. The interaction between Sec1p and Ssop is limited by the abundance of SNARE complexes present in sec mutants that are defective in either SNARE complex assembly or disassembly. Furthermore, the localization of green fluorescent protein (GFP)-tagged Sec1p coincides with sites of vesicle docking and fusion where SNARE complexes are believed to assemble and function. The proposal that SNARE complexes act as receptors for Sec1p is supported by the mislocalization of GFP-Sec1p in a mutant defective for SNARE complex assembly and by the robust localization of GFP-Sec1p in a mutant that fails to disassemble SNARE complexes. The results presented here place yeast Sec1p at the core of the exocytic fusion machinery, bound to SNARE complexes and localized to sites of secretion.  (+info)

Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. (5/322)

Biochemical studies suggest that syntaxin 1A participates in multiple protein-protein interactions in the synaptic terminal, but the in vivo significance of these interactions is poorly understood. We used a targeted mutagenesis approach to eliminate specific syntaxin binding interactions and demonstrate that Drosophila syntaxin 1A plays multiple regulatory roles in neurotransmission in vivo. Syntaxin mutations that eliminate ROP/Munc-18 binding display increased neurotransmitter release, suggesting that ROP inhibits neurosecretion through its interaction with syntaxin. Syntaxin mutations that block Ca2+ channel binding also cause an increase in neurotransmitter release, suggesting that syntaxin normally functions in inhibiting Ca2+ channel opening. Additionally, we identify and characterize a syntaxin Ca2+ effector domain, which may spatially organize the Ca2+ channel, cysteine string protein, and synaptotagmin for effective excitation-secretion coupling in the presynaptic terminal.  (+info)

A conformational switch in syntaxin during exocytosis: role of munc18. (6/322)

Syntaxin 1, an essential protein in synaptic membrane fusion, contains a helical autonomously folded N-terminal domain, a C-terminal SNARE motif and a transmembrane region. The SNARE motif binds to synaptobrevin and SNAP-25 to assemble the core complex, whereas almost the entire cytoplasmic sequence participates in a complex with munc18-1, a neuronal Sec1 homolog. We now demonstrate by NMR spectroscopy that, in isolation, syntaxin adopts a 'closed' conformation. This default conformation of syntaxin is incompatible with core complex assembly which requires an 'open' syntaxin conformation. Using site-directed mutagenesis, we find that disruption of the closed conformation abolishes the ability of syntaxin to bind to munc18-1 and to inhibit secretion in PC12 cells. These results indicate that syntaxin binds to munc18-1 in a closed conformation and suggest that this conformation represents an essential intermediate in exocytosis. Our data suggest a model whereby, during exocytosis, syntaxin undergoes a large conformational switch that mediates the transition between the syntaxin-munc18-1 complex and the core complex.  (+info)

Syntaxin 3 and Munc-18-2 in epithelial cells during kidney development. (7/322)

BACKGROUND: Differentiation of epithelial cells involves the assembly of polarized membrane transport machineries necessary for the generation and maintenance of the apical and basolateral membrane domains characteristic of this cell type. We have analyzed the expression patterns of vesicle-docking proteins of the syntaxin family in mouse kidney, focusing on syntaxin 3 and its interaction partner, the Sec1-related Munc-18-2. METHODS: Expression patterns were studied by in situ hybridization and immunocytochemistry and the complex formation of syntaxin 3 and Munc-18-2 by coimmunoprecipitation and Western blotting. RESULTS: We have previously shown by in situ hybridization that Munc-18-2 is present in the proximal tubules and collecting ducts of embryonic day 17 mouse kidney. We compared this with the expression patterns of syntaxin 1A, 2, 3, 4, and 5, and found that syntaxin 3 was enriched in the same epithelial structures in which Munc-18-2 was abundant. By immunocytochemistry, the two proteins colocalized at the apical plasma membrane of proximal tubule and collecting duct epithelial cells, and they were shown to form a physical complex in the kidney. The expression of both proteins was up-regulated during kidney development. The most prominent changes in expression levels coincided with the differentiation of proximal tubules, suggesting a role in the generation of the highly active reabsorption machinery characterizing this segment of the nephron. CONCLUSION: The results show that Munc-18-2 and syntaxin 3 form a complex in vivo and suggest that they participate in epithelial cell differentiation and targeted vesicle transport processes in the developing kidney.  (+info)

nSec-1 (munc-18) interacts with both primed and unprimed syntaxin 1A and associates in a dimeric complex on adrenal chromaffin granules. (8/322)

The target-SNARE syntaxin 1A is an essential component of the core machinery required for regulated exocytosis (where SNARE is the soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor). Syntaxin 1A interacts with a variety of other proteins, two of which, N-ethylmaleimide-sensitive fusion protein (NSF) and alpha-soluble NSF attachment protein (alpha-SNAP) have been suggested to impart a conformational rearrangement on this protein during a reaction referred to as priming. We have studied the effect of the primed state on the binding properties of syntaxin 1A and we have confirmed that primed syntaxin 1A no longer associated with alpha-SNAP or its cognate vesicle-SNARE, vesicle-associated membrane protein (VAMP). Under such conditions, however, it retained the ability to bind to nSec-1. It has been demonstrated that nSec-1, a regulatory protein also involved in neuronal exocytosis, binds syntaxin 1A with high affinity in vitro, although evidence for this physical interaction occurring in vivo has proven elusive. We analysed the subcellular distribution of these two proteins in fractions from bovine adrenal medulla and detected syntaxin 1A and nSec-1 in both plasma membrane and chromaffin-granule fractions. Using a cross-linking approach with chromaffin-granule membranes we detected a putative dimeric complex composed of approx. 54% total granule membrane nSec-1 and approx. 30% total syntaxin 1A. The results of this study therefore suggest the possibility of nSec-1 interactions with primed syntaxin 1A and demonstrate a potentially significant interaction of syntaxin 1A and nSec-1 on the membranes of chromaffin granules.  (+info)