The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. (1/13607)

Csx/Nkx2.5 is a vertebrate homeobox gene with a sequence homology to the Drosophila tinman, which is required for the dorsal mesoderm specification. Recently, heterozygous mutations of this gene were found to cause human congenital heart disease (Schott, J.-J., Benson, D. W., Basson, C. T., Pease, W., Silberbach, G. M., Moak, J. P., Maron, B. J., Seidman, C. E. and Seidman, J. G. (1998) Science 281, 108-111). To investigate the functions of Csx/Nkx2.5 in cardiac and extracardiac development in the vertebrate, we have generated and analyzed mutant mice completely null for Csx/Nkx2.5. Homozygous null embryos showed arrest of cardiac development after looping and poor development of blood vessels. Moreover, there were severe defects in vascular formation and hematopoiesis in the mutant yolk sac. Interestingly, TUNEL staining and PCNA staining showed neither enhanced apoptosis nor reduced cell proliferation in the mutant myocardium. In situ hybridization studies demonstrated that, among 20 candidate genes examined, expression of ANF, BNP, MLC2V, N-myc, MEF2C, HAND1 and Msx2 was disturbed in the mutant heart. Moreover, in the heart of adult chimeric mice generated from Csx/Nkx2.5 null ES cells, there were almost no ES cell-derived cardiac myocytes, while there were substantial contributions of Csx /Nkx2.5-deficient cells in other organs. Whole-mount &bgr;-gal staining of chimeric embryos showed that more than 20% contribution of Csx/Nkx2. 5-deficient cells in the heart arrested cardiac development. These results indicate that (1) the complete null mutation of Csx/Nkx2.5 did not abolish initial heart looping, (2) there was no enhanced apoptosis or defective cell cycle entry in Csx/Nkx2.5 null cardiac myocytes, (3) Csx/Nkx2.5 regulates expression of several essential transcription factors in the developing heart, (4) Csx/Nkx2.5 is required for later differentiation of cardiac myocytes, (5) Csx/Nkx2. 5 null cells exert dominant interfering effects on cardiac development, and (6) there were severe defects in yolk sac angiogenesis and hematopoiesis in the Csx/Nkx2.5 null embryos.  (+info)

Characterization of an amphioxus paired box gene, AmphiPax2/5/8: developmental expression patterns in optic support cells, nephridium, thyroid-like structures and pharyngeal gill slits, but not in the midbrain-hindbrain boundary region. (2/13607)

On the basis of developmental gene expression, the vertebrate central nervous system comprises: a forebrain plus anterior midbrain, a midbrain-hindbrain boundary region (MHB) having organizer properties, and a rhombospinal domain. The vertebrate MHB is characterized by position, by organizer properties and by being the early site of action of Wnt1 and engrailed genes, and of genes of the Pax2/5/8 subfamily. Wada and others (Wada, H., Saiga, H., Satoh, N. and Holland, P. W. H. (1998) Development 125, 1113-1122) suggested that ascidian tunicates have a vertebrate-like MHB on the basis of ascidian Pax258 expression there. In another invertebrate chordate, amphioxus, comparable gene expression evidence for a vertebrate-like MHB is lacking. We, therefore, isolated and characterized AmphiPax2/5/8, the sole member of this subfamily in amphioxus. AmphiPax2/5/8 is initially expressed well back in the rhombospinal domain and not where a MHB would be expected. In contrast, most of the other expression domains of AmphiPax2/5/8 correspond to expression domains of vertebrate Pax2, Pax5 and Pax8 in structures that are probably homologous - support cells of the eye, nephridium, thyroid-like structures and pharyngeal gill slits; although AmphiPax2/5/8 is not transcribed in any structures that could be interpreted as homologues of vertebrate otic placodes or otic vesicles. In sum, the developmental expression of AmphiPax2/5/8 indicates that the amphioxus central nervous system lacks a MHB resembling the vertebrate isthmic region. Additional gene expression data for the developing ascidian and amphioxus nervous systems would help determine whether a MHB is a basal chordate character secondarily lost in amphioxus. The alternative is that the MHB is a vertebrate innovation.  (+info)

Molecular chaperones: small heat shock proteins in the limelight. (3/13607)

Small heat shock proteins have been the Cinderellas of the molecular chaperone world, but now the crystal structure of a small heat shock protein has been solved and mutation of two human homologues implicated in genetic disease. Intermediate filaments appear to be one of the key targets of their chaperone activity.  (+info)

TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. (4/13607)

We report the cloning and characterization of a novel member of the Transcriptional Intermediary Factor 1 (TIF1) gene family, human TIF1gamma. Similar to TIF1alpha and TIF1beta, the structure of TIF1beta is characterized by multiple domains: RING finger, B boxes, Coiled coil, PHD/TTC, and bromodomain. Although structurally related to TIF1alpha and TIF1beta, TIF1gamma presents several functional differences. In contrast to TIF1alpha, but like TIF1beta, TIF1 does not interact with nuclear receptors in yeast two-hybrid or GST pull-down assays and does not interfere with retinoic acid response in transfected mammalian cells. Whereas TIF1alpha and TIF1beta were previously found to interact with the KRAB silencing domain of KOX1 and with the HP1alpha, MODI (HP1beta) and MOD2 (HP1gamma) heterochromatinic proteins, suggesting that they may participate in a complex involved in heterochromatin-induced gene repression, TIF1gamma does not interact with either the KRAB domain of KOX1 or the HP1 proteins. Nevertheless, TIF1gamma, like TIF1alpha and TIF1beta, exhibits a strong silencing activity when tethered to a promoter. Since deletion of a novel motif unique to the three TIF1 proteins, called TIF1 signature sequence (TSS), abrogates transcriptional repression by TIF1gamma, this motif likely participates in TIF1 dependent repression.  (+info)

Molecular phylogeny of the ETS gene family. (5/13607)

We have constructed a molecular phylogeny of the ETS gene family. By distance and parsimony analysis of the ETS conserved domains we show that the family containing so far 29 different genes in vertebrates can be divided into 13 groups of genes namely ETS, ER71, GABP, PEA3, ERG, ERF, ELK, DETS4, ELF, ESE, TEL, YAN, SPI. Since the three dimensional structure of the ETS domain has revealed a similarity with the winged-helix-turn-helix proteins, we used two of them (CAP and HSF) to root the tree. This allowed us to show that the family can be divided into five subfamilies: ETS, DETS4, ELF, TEL and SPI. The ETS subfamily comprises the ETS, ER71, GABP, PEA3, ERG, ERF and the ELK groups which appear more related to each other than to any other ETS family members. The fact that some members of these subfamilies were identified in early metazoans such as diploblasts and sponges suggests that the diversification of ETS family genes predates the diversification of metazoans. By the combined analysis of both the ETS and the PNT domains, which are conserved in some members of the family, we showed that the GABP group, and not the ERG group, is the one most closely related to the ETS group. We also observed that the speed of accumulation of mutations in the various genes of the family is highly variable. Noticeably, paralogous members of the ELK group exhibit strikingly different evolutionary speed suggesting that the evolutionary pressure they support is very different.  (+info)

ETO-2, a new member of the ETO-family of nuclear proteins. (6/13607)

The t(8;21) is associated with 12-15% of acute myelogenous leukemias of the M2 subtype. The translocation results in the fusion of two genes, AML1 (CBFA2) on chromosome 21 and ETO (MTG8) on chromosome 8. AML1 encodes a DNA binding factor; the ETO protein product is less well characterized, but is thought to be a transcription factor. Here we describe the isolation and characterization of ETO-2, a murine cDNA that encodes a new member of the ETO family of proteins. ETO-2 is 75% identical to murine ETO and shares very high sequence identities over four regions of the protein with ETO (domain I-III and zinc-finger). Northern analysis identifies ETO-2 transcripts in many of the murine tissues analysed and in the developing mouse embryo. ETO-2 is also expressed in myeloid and erythroid cell lines. We confirmed the nuclear localization of ETO-2 and demonstrated that domain III and the zinc-finger region are not required for nuclear localization. We further showed that a region within ETO, containing domain II, mediates dimerization among family members. This region is conserved in the oncoprotein AML-1/ETO. The recent identification of another ETO-like protein, myeloid translocation gene-related protein 1, together with the data presented here, demonstrates that at least three ETO proteins exist with the potential to form dimers in the cell nucleus.  (+info)

Isolation of zebrafish gdf7 and comparative genetic mapping of genes belonging to the growth/differentiation factor 5, 6, 7 subgroup of the TGF-beta superfamily. (7/13607)

The Growth/differentiation factor (Gdf) 5, 6, 7 genes form a closely related subgroup belonging to the TGF-beta superfamily. In zebrafish, there are three genes that belong to the Gdf5, 6, 7 subgroup that have been named radar, dynamo, and contact. The genes radar and dynamo both encode proteins most similar to mouse GDF6. The orthologous identity of these genes on the basis of amino acid similarities has not been clear. We have identified gdf7, a fourth zebrafish gene belonging to the Gdf5, 6, 7 subgroup. To assign correct orthologies and to investigate the evolutionary relationships of the human, mouse, and zebrafish Gdf5, 6, 7 subgroup, we have compared genetic map positions of the zebrafish and mammalian genes. We have mapped zebrafish gdf7 to linkage group (LG) 17, contact to LG9, GDF6 to human chromosome (Hsa) 8 and GDF7 to Hsa2p. The radar and dynamo genes have been localized previously to LG16 and LG19, respectively. A comparison of syntenies shared among human, mouse, and zebrafish genomes indicates that gdf7 is the ortholog of mammalian GDF7/Gdf7. LG16 shares syntenic relationships with mouse chromosome (Mmu) 4, including Gdf6. Portions of LG16 and LG19 appear to be duplicate chromosomes, thus suggesting that radar and dynamo are both orthologs of Gdf6. Finally, the mapping data is consistent with contact being the zebrafish ortholog of mammalian GDF5/Gdf5.  (+info)

Analysis of two cosmid clones from chromosome 4 of Drosophila melanogaster reveals two new genes amid an unusual arrangement of repeated sequences. (8/13607)

Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing approximately 5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met-hepatocyte growth factor receptor. The other cosmid contains only the two short 5'-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the beta-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome.  (+info)