Intranasal immunization with heat-inactivated Streptococcus pneumoniae protects mice against systemic pneumococcal infection. (57/2167)

In order to study the mucosal and serum antibody response to polysaccharide-encapsulated bacteria in mice, a preparation of heat-inactivated Streptococcus pneumoniae type 4 was administered, with and without cholera toxin, at various mucosal sites. It appeared that intranasal immunization of nonanesthesized animals was superior to either oral, gastric, or colonic-rectal antigen delivery with regard to the induction of serum immunoglobulin G (IgG) and IgA, as well as saliva IgA antibodies specific for pneumococci. The marked IgA antibody response in feces after intranasal, but not after oral or gastric, immunization is suggestive of a cellular link between the nasal induction site and the distant mucosal effector sites. Intranasal immunization also induced antibodies in serum and in mucosal secretions against type-specific capsular polysaccharide. IgA and IgG antibody levels in pulmonary lavage fluids correlated well with saliva IgA and serum IgG antibodies, respectively. Antibody determinations in pulmonary secretions may therefore be redundant in some cases, and the number of experimental animals may be reduced accordingly. After intraperitoneal challenge with type 4 pneumococci, mice immunized intranasally were protected against both systemic infection and death, even without the use of cholera toxin as a mucosal adjuvant. Thus, an efficient intranasal vaccine against invasive pneumococcal disease may be based on a very simple formulation with whole killed pneumococci.  (+info)

Mucosa-associated lymphoid tissues as sites for uptake, carriage and excretion of tubercle bacilli and other pathogenic mycobacteria. (58/2167)

Pathogenic mycobacteria, including those that cause tuberculosis and paratuberculosis, cross mucosal barriers by endocytosis within mucosal lymphoepithelial sites. These entry sites commonly include oropharyngeal and nasopharyngeal tonsils and Peyer's patches. Bacilli discharged at the basolateral surfaces of engulfing epithelial M cells are taken up by professional antigen-presenting cells associated with T lymphocytes of the parafollicular area. Dendritic cells and macrophages in these sites allow mycobacterial replication, due to the permissive immunological environment in lymphoepithelial tissues. Abrogation of local delayed-type hypersensitivity reactions generally ensures continuing integrity and function of these tissues. Phagocytes containing intracellular mycobacteria disseminate infection to other parts of the body and also probably migrate back onto the mucosal surface to shed bacilli.  (+info)

Mammalian reproductive tract mucins. (59/2167)

Mucin glycoproteins are major constituents of the glycocalyx that covers mucosal epithelium. Two broad classes of mucins exist: membrane-associated and secretory. Of the secreted mucins, those with cysteine-rich regions are thought to polymerize through disulphide bonds. Among these gel-forming mucins are MUC2, MUC5AC, MUC5B and possibly MUC6. MUC7 lacks cysteine-rich domains and is thought to be secreted as a soluble monomer. Incomplete sequence information prevents classification of other mucins. Tandem repeats of amino acids rich in serine, threonine and proline are a common element in mucin core proteins, giving rise to relatively rigid, linear molecules with great potential for glycosylation. Ten distinct mucin genes have been identified in humans so far. Patterns of expression vary greatly. While MUC9, or oviductin, appears to be restricted to oviduct, the transmembrane mucin MUC1 is widely expressed. Proven functions for the different mucins are largely unknown, although potential functions are addressed in this review. Genetic and protein sequence information and expression profiles are also summarized, followed by a description of mucin assembly. Special attention is given to mucin expression in male and female reproductive tracts.  (+info)

Cloning of gp-340, a putative opsonin receptor for lung surfactant protein D. (60/2167)

Surfactant protein D (SP-D) is an oligomeric C type lectin that promotes phagocytosis by binding to microbial surface carbohydrates. A 340-kDa glycoprotein (gp-340) has been shown to bind SP-D in the presence of calcium but does so independently of carbohydrate recognition. This protein exists both in a soluble form and in association with the membranes of alveolar macrophages. The primary structure of gp-340 has been established by molecular cloning, which yielded a 7,686-bp cDNA sequence encoding a polypeptide chain of 2, 413 amino acids. The domain organization features 13 scavenger receptor cysteine-rich (SRCR) domains, each separated by an SRCR-interspersed domain, except for SRCRs 4 and 5, which are contiguous. The 13 SRCR domains are followed by two C1r/C1s Uegf Bmp1 domains separated by a 14th SRCR domain and a zona pellucida domain. gp-340 seems to be an alternative spliced form of DMBT1. Reverse transcription-PCR analysis showed that the main sites of synthesis of gp-340 are lung, trachea, salivary gland, small intestine, and stomach. Immunohistochemistry revealed strong staining for gp-340 in alveolar and other tissue macrophages. Immunostaining of the macrophage membrane was either uniform or focal in a way that suggested capping, whereas other macrophages showed strong intracellular staining within the phagosome/phagolysosome compartments. In some macrophages, SP-D and gp-340 were located in the same cellular compartment. Immunoreactive gp-340 was also found in epithelial cells of the small intestine and in the ducts of salivary glands. The distribution of gp-340 in macrophages is compatible with a role as an opsonin receptor for SP-D.  (+info)

An enhanced epithelial response of a papillomavirus promoter to transcriptional activators. (61/2167)

Mucosal epitheliotropic papillomaviruses have a similar long control region (LCR) organization: a promoter region, an enhancer region, and a highly conserved distribution of E2 DNA binding sites. The enhancer of these viruses is epithelial-specific, as it fails to activate transcription from heterologous promoters in nonepithelial cell types (Gloss, B., Bernard, H. U., Seedorf, K., and Klock, G. (1987) EMBO J. 6, 3735-3743; Morgan, I. M., Grindlay, G. J., and Campo, M. S. (1999) J. Gen. Virol. 80, 23-27). Studies on E2 transcriptional regulation of the human mucosal epitheliotropic papillomaviruses have been hindered by poor access to the natural target cell type and by the observation that some of the human papillomavirus promoters, including human papillomavirus-16, are repressed in immortalized epithelial cells. Here we present results using the bovine papillomavirus-4 (BPV-4) LCR and a bovine primary cell system as a model to study the mechanism of E2 transcriptional regulation of mucosal epitheliotropic papillomaviruses and the cell type specificity of this regulation. E2 up-regulates transcription from the BPV-4 LCR preferentially in epithelial cells (Morgan, I. M., Grindlay, G. J., and Campo, M. S. (1998) J. Gen. Virol. 79, 501-508). We demonstrate that the epithelial-specific enhancer element of the BPV-4 LCR is not required for the enhanced activity of E2 in epithelial cells and that the BPV-4 promoter is more responsive, not only to E2, but to other transcriptional activators in epithelial cells. This is the first time a level of epithelial specificity has been shown to reside in a papillomavirus promoter region.  (+info)

Nucleotide stimulation of Cl(-) secretion in the pigmented rabbit conjunctiva. (62/2167)

We evaluated the role of extracellular UTP and other nucleotides in the regulation of active ion transport across the pigmented rabbit conjunctiva. When added to the mucosal side of the conjunctiva, UTP (0.01-1000 microM), increased the short-circuit current by up to 14. 6 +/- 2.1 microA/cm(2). The half-maximal concentration was 11.4 +/- 2.3 microM. The serosal absence of Cl(-), serosal presence of 10 microM bumetanide, and mucosal presence of 0.3 mM N-phenylanthranilic acid significantly reduced the change in the short-circuit current (DeltaIsc) induced by 10 microM UTP by 78, 77, and 42%, respectively. Mucosal 10 microM UTP significantly increased (36)Cl flux in the serosal-to-mucosal direction by 0.17 microEq/cm(2)/h, while not affecting mucosal-to-serosal (36)Cl flux. By contrast, (22)Na transport in either direction was unaffected. The rank order of DeltaIsc elicited by adenosine and nucleotides was consistent with the predominant involvement of P2Y purinergic receptors in the UTP effect on conjunctival ion transport. Moreover, the DeltaIsc elicited by UTP was inhibited by 0.05 and 1 mM suramin (a P2-purinergic receptor antagonist), resulting in a rightward shift of the half-maximal concentration to 106.7 +/- 1.3 microM. In conclusion, the primary effect of UTP on ion transport in the pigmented rabbit conjunctiva is stimulation of Cl(-) secretion, possibly at the P2Y(2) and/or the P2Y(4) receptor on the mucosal side of the tissue. Because of the coupling of fluid flow with Cl(-) secretion, UTP or its analogs may be considered for stimulating transconjunctival fluid flow in the dry-eye state.  (+info)

GABA(B) receptors inhibit mechanosensitivity of primary afferent endings. (63/2167)

The modulatory effects of baclofen on the sensitivity of peripheral afferent endings to mechanical stimulation were investigated using an in vitro ferret gastroesophageal vagal afferent preparation. Changes in sensitivity of three types of gastroesophageal vagal afferent endings previously categorized as mucosal, tension, and tension-mucosal (TM) receptors according to their mechanoreceptive field characteristics were investigated. Baclofen (30-200 microM) dose dependently reduced responses of mucosal afferents to mucosal stroking with calibrated von Frey hairs (10-1000 mg). This was reversed by the GABA(B) receptor antagonist SCH50911 (1 microM). TM afferent responses to mucosal stroking (10-1000 mg) were unaffected by baclofen (30-200 microM). However, baclofen (30-200 microM) significantly inhibited the response of 11 of 18 TM afferents to circumferential tension. This was reversed by SCH50911 (1 microM). Baclofen (100 and 200 microM) significantly inhibited the response of all tension receptor afferents to circumferential tension in the lower range (1-3 gm) but not in the higher range (4-7 gm). This inhibition was reversed by SCH50911 (1 microM; n = 3). This study provides the first direct evidence for the inhibitory modulation of peripheral mechanosensory endings by the G-protein-coupled GABA(B) receptor. Inhibition was dose-dependent, pharmacologically reversible, and selective to certain aspects of mechanosensitivity. These findings have important relevance to strategies for selective reduction of sensory input to the CNS at a peripheral site.  (+info)

Role of salivary mucin in the protection of rat esophageal mucosa from acid and pepsin-induced injury. (64/2167)

The mucosal defensive mechanisms of the esophagus against acid and pepsin remain to be elucidated. In the present study, we investigated the contribution of the salivary mucin in maintaining the integrity of the esophageal mucosa. When an everted esophageal sac, isolated from normal rat, was treated with N-acetyl-L-cysteine, a mucolytic agent, the amount of glycoprotein in the gel layer adherent to the epithelium was completely depleted and the susceptibility of the mucosa against acidified pepsin-induced digestion increased. In sialoadenectomized rats, 7 days after extirpation, the amount of glycoprotein adherent to the esophageal epithelium was definitely reduced, and the esophageal mucosa was significantly vulnerable to acidified pepsin-induced digestion compared with the sham-operated rats. Induction of regurgitation of the gastric juices into the esophagus resulted in the development of severe hemorrhagic esophageal lesions only in the sialoadenectomized rats but not in the sham-operated rats. In conclusion, the glycoprotein in the adherent gel layer in rat esophagus, which mainly derives from salivary glands, plays an important role in the preepithelial defense to maintain the integrity of the esophageal mucosa against acid and pepsin.  (+info)