Mucociliary and long-term particle clearance in airways of patients with immotile cilia. (65/291)

Spherical monodisperse ferromagnetic iron oxide particles of 1.9 microm geometric and 4.2 microm aerodynamic diameter were inhaled by seven patients with primary ciliary dyskinesia (PCD) using the shallow bolus technique, and compared to 13 healthy non-smokers (NS) from a previous study. The bolus penetration front depth was limiting to the phase1 dead space volume. In PCD patients deposition was 58+/-8 % after 8 s breath holding time. Particle retention was measured by the magnetopneumographic method over a period of nine months. Particle clearance from the airways showed a fast and a slow phase. In PCD patients airway clearance was retarded and prolonged, 42+/-12 % followed the fast phase with a mean half time of 16.8+/-8.6 hours. The remaining fraction was cleared slowly with a half time of 121+/-25 days. In healthy NS 49+/-9 % of particles were cleared in the fast phase with a mean half time of 3.0+/-1.6 hours, characteristic of an intact mucociliary clearance. There was no difference in the slow clearance phase between PCD patients and healthy NS. Despite non-functioning cilia the effectiveness of airway clearance in PCD patients is comparable to healthy NS, with a prolonged kinetics of one week, which may primarily reflect the effectiveness of cough clearance. This prolonged airway clearance allows longer residence times of bacteria and viruses in the airways and may be one reason for increased frequency of infections in PCD patients.  (+info)

Physiological effects of vibration in subjects with cystic fibrosis. (66/291)

The physiological mechanisms by which vibration and other physiotherapy interventions may clear secretions in subjects with cystic fibrosis are unknown. The main aim of this study was to compare the expiratory flow rates and frequencies of airflow oscillation of vibration to those of Acapella(R), Flutter(R), positive expiratory pressure and percussion. Respiratory flow rates were measured during interventions, the order of which was randomised. The oscillation of the airflow of the interventions was determined by frequency spectral analysis. In 18 young adult subjects with cystic fibrosis, the mean peak expiratory flow rate of vibration was greater than Flutter(R), percussion, Acapella(R) and positive expiratory pressure. The mean+/-sd of the oscillation of the airflow of vibration (8.4+/-0.4 Hz) was lower than Acapella(R) (13.5+/-1.7 Hz) and Flutter(R) (11.3+/-1.5 Hz) but similar to percussion (7.3+/-0.3 Hz). Theoretically, the higher peak expiratory flow rate of vibration compared to the other physiotherapy interventions may promote secretion clearance. In addition, the frequency of oscillation of vibration was within the range demonstrated to increase mucus transport. This study has provided some evidence for the physiological rationale for the use of vibration to aid secretion clearance.  (+info)

Effect of needle puncture and electro-acupuncture on mucociliary clearance in anesthetized quails. (67/291)

BACKGROUND: Acupuncture therapy for obstructive respiratory diseases has been effectively used in clinical practice and the acupuncture points or acupoints of Zhongfu and Tiantu are commonly-used acupoints to treat patients with the diseases. Since the impaired mucociliary clearance is among the most important features of airway inflammation in most obstructive respiratory diseases, the effect of needle puncture and electro-acupuncture at the specific acupoints on tracheal mucociliary clearance was investigated in anesthetized quails. METHODS: Mucociliary transport velocity on tracheal mucosa was measured through observing the optimal pathway, and fucose and protein contents in tracheal lavages were determined with biochemical methods. In the therapeutic group, needle puncture or electro-acupuncture stimulation to the acupoints was applied without or with constant current output in 2 mA and at frequency of 100 Hz for 60 minutes. In the sham group, electro-acupuncture stimulation to Liangmen was applied. RESULTS: Our present experiments demonstrated that the electro-acupuncture stimulation to Zhongfu and Tiantu significantly increased tracheal mucociliary transport velocity and decreased the content of protein in the tracheal lavage, compared with the control group. Moreover, either needle puncture or electro-acupuncture stimulation to Zhongfu and Tiantu significantly reverted the human neutrophil elastase-induced decrease in tracheal mucociliary transport velocity and human neutrophil elastase -induced increase in the contents of fucose and protein in the tracheal lavage, compared with the control group. CONCLUSION: These results suggest that either needle puncture or electro-acupuncture stimulation to the effective acupoints significantly improves both airway mucociliary clearance and the airway surface liquid and that the improvements maybe ascribed to both the special function of the points and the substantial stimulation of electricity.  (+info)

Migration of a foreign body in the maxillary sinus illustrating natural mucociliary action. (68/291)

We present a case of a foreign body which migrated to the maxillary ostia by mucociliary action from its initial location on the floor of the maxillary sinus where it was traumatically introduced. This report illustrates that a powerful mechanism of mucociliary action can cause relatively heavy objects within the maxillary sinus to migrate naturally to the sinus ostia against gravitational force.  (+info)

Long-term clearance from small airways in subjects with ciliary dysfunction. (69/291)

The objective of this study was to investigate if long-term clearance from small airways is dependent on normal ciliary function. Six young adults with primary ciliary dyskinesia (PCD) inhaled 111 Indium labelled Teflon particles of 4.2 microm geometric and 6.2 microm aerodynamic diameter with an extremely slow inhalation flow, 0.05 L/s. The inhalation method deposits particles mainly in the small conducting airways. Lung retention was measured immediately after inhalation and at four occasions up to 21 days after inhalation. Results were compared with data from ten healthy controls. For additional comparison three of the PCD subjects also inhaled the test particles with normal inhalation flow, 0.5 L/s, providing a more central deposition. The lung retention at 24 h in % of lung deposition (Ret24) was higher (p < 0.001) in the PCD subjects, 79 % (95% Confidence Interval, 67.6;90.6), compared to 49% (42.3;55.5) in the healthy controls. There was a significant clearance after 24 h both in the PCD subjects and in the healthy controls with equivalent clearance. The mean Ret24 with slow inhalation flow was 73.9 +/- 1.9% compared to 68.9 +/- 7.5% with normal inhalation flow in the three PCD subjects exposed twice. During day 7-21 the three PCD subjects exposed twice cleared 9% with normal flow, probably representing predominantly alveolar clearance, compared to 19% with slow inhalation flow, probably representing mainly small airway clearance. This study shows that despite ciliary dysfunction, clearance continues in the small airways beyond 24 h. There are apparently additional clearance mechanisms present in the small airways.  (+info)

IL-12 overexpression in mice as a model for Sjogren lung disease. (70/291)

Interleukin-12 (IL-12), a Th1 proinflammatory cytokine, is reported to be increased in Sjogren syndrome. To evaluate the effects of local Th1/Th2 deregulation, we generated a transgenic mouse model that overexpresses IL-12 in the lungs. IL-12 transgenic mice developed bronchial and alveolar abnormalities strikingly similar to those found in the lungs of Sjogren patients. Pathologically, lung abnormalities began at approximately 4 mo of age and were characterized by lymphocytic infiltrates around the bronchi, intraluminal periodic acid Schiff-positive debris, increased cell proliferation in the alveolar region, and increased interstitial and alveolar macrophages. Functionally, these abnormalities translated into decreased mucociliary clearance (P<0.05 vs. wild-type littermates) and increased oxidative stress (P<0.01). The pathological and functional abnormalities were accompanied by significant changes in lung natural killer (NK) cells. The number of NK cells was fourfold higher in IL-12 transgenic than wild-type lungs (20% of all lymphoid cells vs. 5%) during the first month of life. NK cells then decreased within a narrow window of time (from 30 to 50 days of age), reaching a nadir of approximately 2% on day 50, and remained at these low levels thereafter. This new mouse model highlights the role of IL-12 in the initiation of Sjogren syndrome.  (+info)

Protein P200 is dispensable for Mycoplasma pneumoniae hemadsorption but not gliding motility or colonization of differentiated bronchial epithelium. (71/291)

Mycoplasma pneumoniae protein P200 was localized to the terminal organelle, which functions in cytadherence and gliding motility. The loss of P200 had no impact on binding to erythrocytes and A549 cells but resulted in impaired gliding motility and colonization of differentiated bronchial epithelium. Thus, gliding may be necessary to overcome mucociliary clearance.  (+info)

Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. (72/291)

Expression of a polysaccharide capsule is required for the full pathogenicity of many mucosal pathogens such as Streptococcus pneumoniae. Although capsule allows for evasion of opsonization and subsequent phagocytosis during invasive infection, its role during mucosal colonization, the organism's commensal state, remains unknown. Using a mouse model, we demonstrate that unencapsulated mutants remain capable of nasal colonization but at a reduced density and duration compared to those of their encapsulated parent strains. This deficit in colonization was not due to increased susceptibility to opsonophagocytic clearance involving complement, antibody, or the influx of Ly-6G-positive cells, including neutrophils seen during carriage. Rather, unencapsulated mutants remain agglutinated within lumenal mucus and, thus, are less likely to transit to the epithelial surface where stable colonization occurs. Studies of in vitro binding to immobilized human airway mucus confirmed the inhibitory effect of encapsulation. Likewise, pneumococcal variants expressing larger amounts of negatively charged capsule per cell were less likely to adhere to surfaces coated with human mucus and more likely to evade initial clearance in vivo. Removal of negatively charged sialic acid residues by pretreatment of mucus with neuraminidase diminished the antiadhesive effect of encapsulation. This suggests that the inhibitory effect of encapsulation on mucus binding may be mediated by electrostatic repulsion and offers an explanation for the predominance of anionic polysaccharides among the diverse array of unique capsule types. In conclusion, our findings demonstrate that capsule confers an advantage to mucosal pathogens distinct from its role in inhibition of opsonophagocytosis--escape from entrapment in lumenal mucus.  (+info)