Loading...
(1/291) Clearance in small ciliated airways in allergic asthmatics after bronchial allergen provocation.

BACKGROUND: Asthma tends to affect mucociliary clearance, as assessed from measurements in large airways. However, there is no knowledge about clearance in the smallest airways of the tracheobronchial region in acute exacerbation of asthma. OBJECTIVE: The aim of the study was to investigate clearance from the bronchiolar region in patients with allergic asthma in a situation resembling a mild acute exacerbation of the disease. We also aimed to compare clearance data with corresponding data found for healthy subjects and asthmatics on therapy. METHODS: Tracheobronchial clearance was studied twice in 9 patients with mild asthma of the allergic type after inhalation of 6 microm (aerodynamic diameter) monodisperse Teflon particles labelled with 111In. At one exposure, inhalation was performed 4 h after bronchial provocation with an allergen the patients were allergic to. The second exposure was a control measurement. The particles were inhaled at an extremely slow flow, 0.05 liter/s, which gives deposition mainly in the small ciliated airways (bronchioles). Lung retention was measured at 0, 24, 48 and 72 h. RESULTS: All patients demonstrated an early asthmatic reaction of varying degree after bronchial provocation. There was significant clearance of radioaerosol in each 24-hour period for both exposures, with the possible exception of the period between 24 and 48 h for the provocation exposure, with similar fractions of retained particles at all points of time. The retained fractions were significantly larger compared to a group of healthy subjects and asthmatics on regular treatment with anti-inflammatory drugs. CONCLUSIONS: Our results indicate that in allergic asthmatics a bronchial allergen provocation with an early asthmatic reaction does not significantly influence overall clearance from the bronchiolar region. However, in the present group of patients, retention in small ciliated airways was significantly higher compared to healthy subjects and asthmatics on regular treatment.  (+info)

(2/291) The effects of ketolides on bioactive phospholipid-induced injury to human respiratory epithelium in vitro.

The potential of the novel ketolide antimicrobial agents, HMR 3004 and HMR 3647, to antagonize the injurious effects of the bioactive phospholipids (PL), platelet-activating factor (PAF), lyso-PAF, and lysophosphatidylcholine (LPC) on the ciliary beat frequency and structural integrity of human ciliated respiratory epithelium in vitro was investigated, in the presence or absence of polymorphonuclear leukocytes (PMNL). The ciliary beat frequency of human nasal respiratory epithelium, obtained by nasal brushing of healthy volunteers, was measured using a photo-transistor technique, while superoxide generation by activated human PMNL and membrane-stabilizing activity were measured by lucigenin-enhanced chemiluminescence and haemolytic procedures, respectively. All three PL, at concentrations of 2.5 microg x mL(-1), caused significant (p<0.005) ciliary slowing and epithelial damage, while treatment of the epithelial strips with the ketolides, in particular HMR 3004, caused dose-related attenuation of these direct adverse effects of the PL on ciliated epithelium, apparently by a membrane-stabilizing mechanism. When epithelial strips were exposed to the combination of PMNL (1 x 10(6) cells x mL(-1)) and PAF (1 microg x mL(-1)), significant ciliary dysfunction and epithelial damage were also observed, which were mediated predominantly by neutrophil-derived oxidants. These injurious effects of PAF were antagonized by preincubation of the epithelial strips or the PMNL with HMR 3004 (10 microg x mL(-1)). The ketolide antimicrobial agents, in particular HMR 3004, antagonize the direct and polymorphonuclear leukocyte-mediated injurious effects of phospholipids on human ciliated epithelium and may have beneficial effects in inflammatory disorders of the airways, such as asthma, chronic bronchitis, diffuse panbronchiolitis and bronchiectasis.  (+info)

(3/291) Regulation of mucociliary clearance in health and disease.

Airway secretions are cleared by mucociliary clearance (MCC), in addition to other mechanisms such as cough, peristalsis, two-phase gas-liquid flow and alveolar clearance. MCC comprises the cephalad movement of mucus caused by the cilia lining the conducting airways until it can be swallowed or expectorated. MCC is a very complex process in which many variables are involved, all of which may modify the final outcome. The structure, number, movement and co-ordination of the cilia present in the airways as well as the amount, composition and rheological properties of the periciliary and mucus layers are determinants of MCC. Physiological factors such as age, sex, posture, sleep and exercise are reported to influence MCC due to a change in the cilia, the mucus or the periciliary layer, or a combination of these. Environmental pollution is suspected to have a depressant effect on MCC dependent on different factors such as pollutant concentration and the duration of exposure. Most studies focus on sulphur dioxide, sulphuric acid, nitrogen dioxide and ozone. Tobacco smoke and hairspray have been noted to have a negative influence on MCC. Some diseases are known to affect MCC, mostly negatively. The underlying mechanism differs from one illness to another. Immotile cilia syndrome, asthma, bronchiectasis, chronic bronchitis, cystic fibrosis and some acute respiratory tract infections are among the most frequently reported. The present paper reviews normal mucociliary clearance and the effects of diseases on this process.  (+info)

(4/291) Physiotherapy and bronchial mucus transport.

Cough and expectoration of mucus are the best-known symptoms in patients with pulmonary disease. The most applied intervention for these symptoms is the use of chest physiotherapy to increase bronchial mucus transport and reduce retention of mucus in the airways. Chest physiotherapy interventions can be evaluated using different outcome variables, such as bronchial mucus transport measurement, measurement of the amount of expectorated mucus, pulmonary function, medication use, frequency of exacerbation and quality of life. Measurement of the transport rate of mucus in the airways using a radioactive tracer appears to be an appropriate outcome variable for short-term studies. Evaluation of chest physiotherapy only with pulmonary function tests appears to be inadequate in short-term studies. The popularity of using pulmonary function tests is probably based more on the availability of the instruments than on a theoretical basis related to the question of chest physiotherapy improving mucus transport. Quality of life and progression of the disease are not often used as outcome variables, but it may be worthwhile to use these in the future.  (+info)

(5/291) Acute effects of inhalable particles on the frog palate mucociliary epithelium.

This work was designed to evaluate the toxicity of inhalable particles [less than/equal to] 10 microm in aerodynamic diameter (PM(10)) collected from the urban air in Sao Paulo, Brazil, to the mucociliary apparatus using the frog palate preparation. Seven groups of frog palates were immersed in different concentrations of PM(10) diluted in Ringer's solution during 120 min: 0 (control, n = 31); 50 (n = 10); 100 (n = 9); 500 (n = 28); 1,000 (n = 10); 5,000 (n = 11); and 10,000 microg/m(3) (n = 10). Mucociliary transport and transepithelial potential difference were determined at 0, 30, 60, and 120 min exposure. Additional groups (control and 500 microg/m(3)) were studied by means of morphometric analyses (quantification of the amount of intraepithelial and surface mucins), measurement of cilia beat frequency, and quantification of total glutathione. Mucociliary transport and transepithelial potential difference were significantly decreased at higher concentrations of PM(10) (p = 0.03 and p = 0.02, respectively). Exposure to PM(10) also elicited a significant decrease of total glutathione (p = 0. 003) and depletion of neutral intraepithelial mucins (p = 0.0461). These results show that PM(10) can promote significant alterations in ciliated epithelium in vitro.  (+info)

(6/291) Effect of fluticasone propionate and salmeterol on Pseudomonas aeruginosa infection of the respiratory mucosa in vitro.

The purpose of this study was to investigate the effect of the corticosteroid, fluticasone propionate (FP), on Pseudomonas aeruginosa infection of the respiratory mucosa of an organ culture model in vitro. Organ cultures infected with P. aeruginosa had significantly (p< or =0.05) elevated levels of mucosal damage and significantly (p< or =0.05) less ciliated cells compared to controls. Preincubation of tissue with FP (10(-6) or 10(-5) but not 10(-7) M) prior to P. aeruginosa infection significantly (p< or =0.05) reduced the bacterially induced mucosal damage in a concentration-dependent manner. FP (10(-5) M) also significantly (p< or =0.05) prevented loss of ciliated cells. FP did not alter the density of bacteria adherent to the different mucosal features of the organ cultures, but did reduce total bacterial numbers due to the reduced amount of damaged tissue, which is a preferred site of P. aeruginosa adherence. It has previously been shown that the long-acting beta2-agonist salmeterol (4 x 10(-7)M) also reduces the mucosal damage caused by P. aeruginosa infection, probably via elevation of intracellular cyclic adenosine monophosphate concentrations. Preincubation of tissue with both 10(-7)M FP and 10(-7)M salmeterol, concentrations at which they did not by themselves influence the effect of P. aeruginosa infection, significantly (p< or =0.05) reduced P. aeruginosa-induced loss of cilia. However, there was no additional benefit from adding 4 x 10(-7)M salmeterol to 10(-6)M FP. In conclusion fluticasone propionate reduced mucosal damage caused by P. aeruginosa infection in vitro and preserved ciliated cells. There was a synergistic action with salmeterol in the preservation of ciliated cells.  (+info)

(7/291) Effects of drugs on mucus clearance.

Mucociliary clearance (MCC), the process in which airway mucus together with substances trapped within are moved out of the lungs, is an important defence mechanism of the human body. Drugs may alter this process, such that it is necessary to know the effect of the drugs on MCC. Indeed, agents stimulating MCC may be used therapeutically in respiratory medicine, especially in patients suspected of having an impairment of their mucociliary transport system. In contrast, caution should be taken with drugs depressing MCC as an undesired side-effect, independently of their therapeutic indication. Since cough clearance (CC) serves as a back-up system when MCC fails, the influence of drugs must be examined not only on MCC but also on CC. Ultimately, the clinical repercussions of alterations in mucus transport induced by drug administration must be studied. Tertiary ammonium compounds (anticholinergics), aspirin, anaesthetic agents and benzodiazepines have been shown to be capable of depressing the mucociliary transport system. Cholinergics, methylxanthines, sodium cromoglycate, hypertonic saline, saline as well as water aerosol have been shown to increase MCC. Adrenergic antagonists, guaifenesin, S-carboxymethylcysteine, sodium 2-mercapto-ethane sulphonate and frusemide have been reported not to alter the mucociliary transport significantly. Amiloride, uridine 5'-triphosphate (UTP), quaternary ammonium compounds (anticholinergics), adrenergic agonists, corticosteroids, recombinant human deoxyribonuclease (rhDNase), N-acetylcysteine, bromhexine and ambroxol have been reported either not to change or to augment MCC. Indirect data suggest that surfactant as well as antibiotics may improve the mucociliary transport system. As for the influence of drugs on CC, amiloride and rhDNase have been demonstrated to increase the effectiveness of cough. A trend towards an improved CC was noted after treatment with adrenergic agonists. The anticholinergic agent ipratropium bromide, which is a quaternary ammonium compound, has been suggested to decrease CC significantly. Bromhexine, ambroxol and neutral saline seemed not to alter CC, either positively or negatively. Finally, treatment with either amiloride, recombinant human deoxyribonuclease, bromhexine, ambroxol, N-acetylcysteine, S-carboxymethylcysteine or hypertonic saline has been suggested as a possible cause of clinical improvement in patients, such as the experience of dyspnoea, the case of expectoration or the frequency of infective exacerbations. Other agents did not show a clinical benefit.  (+info)

(8/291) Factors affecting the course and severity of transnasally induced Staphylococcus aureus pneumonia in mice.

In order to examine several factors that may affect the course and severity of transnasally induced Staphylococcus aureus pneumonia in mice, bacteria were prepared in a free suspension or bound to fetal mouse cells. Immunosuppression was induced in five strains of mice (ICR, C57BL/6, BALB/c, C3H/He and CBA/J) by injection of cyclophosphamide (200 mg/kg body weight), 2 days before infection. Impairment of mucociliary clearance was induced by intranasal instillation of formalin. Mice were then infected with various doses and strains of the organism. Although no significant differences were observed between either form of inoculum, pretreatment with formalin plus cyclophosphamide was associated with a significant increase in lung bacterial counts. In particular, cyclophosphamide treatment was associated with a high mortality in mice infected with several strains of S. aureus irrespective of their toxin production profiles. Histopathological examination demonstrated that in mice treated with formalin plus cyclophosphamide, clusters of bacteria were observed in lung parenchyma, associated with a mild accumulation of inflammatory cells at day 2 and extensive cell infiltration at day 7. CBA/J mice represented the most susceptible strain among those examined, with 10(4)- and 10(2)-fold higher bacterial counts in the lungs at days 3 and 5, respectively. These results indicate that neutropenia and impaired mucociliary clearance are major factors that influence the severity of S. aureus pneumonia in mice. Analysis of the role of genetic background in enhancement of vulnerability to infection is warranted in future studies.  (+info)