Evidence for a second peptide cleavage in the C-terminal domain of rodent intestinal mucin Muc3. (33/148)

Rat intestinal mucin Muc3 (rMuc3), like its human homologue (MUC3) and several other membrane mucins, contains a C-terminally located SEA (sea urchin sperm protein, enterokinase and agrin) module, with an intrinsic proteolytic site sequence G downward arrow SIVV (where G downward arrow S is the glycine serine cleavage site). As shown previously [Wang, Khatri and Forstner (2002) Biochem. J. 366, 623-631], expression of the C-terminal domain of rMuc3 in COS-1 cells yields a V5 epitope-tagged N-terminal glycopeptide of 30 kDa and a Myc- and His epitope-tagged C-terminal glycopeptide of 49 kDa. The present study shows that the 49 kDa membrane-anchored fragment undergoes a further cleavage reaction which decreases its size to 30 kDa. Western blotting, pulse-chase metabolic incubations, immunoprecipitation and deglycosylation with N-glycosidase F were used to detect and identify the proteolytic products. Both the first and second cleavages are presumed to facilitate solubilization of Muc3 at the apical surface of enterocytes and/or enhance the potential for Muc3 to participate in ligand-receptor and signal transduction events for enterocyte function in vivo.  (+info)

Transcriptional regulation of human mucin MUC4 by bile acids in oesophageal cancer cells is promoter-dependent and involves activation of the phosphatidylinositol 3-kinase signalling pathway. (34/148)

Abnormal gastro-oesophageal reflux and bile acids have been linked to the presence of Barrett's oesophageal premalignant lesion associated with an increase in mucin-producing goblet cells and MUC4 mucin gene overexpression. However, the molecular mechanisms underlying the regulation of MUC4 by bile acids are unknown. Since total bile is a complex mixture, we undertook to identify which bile acids are responsible for MUC4 up-regulation by using a wide panel of bile acids and their conjugates. MUC4 apomucin expression was studied by immunohistochemistry both in patient biopsies and OE33 oesophageal cancer cell line. MUC4 mRNA levels and promoter regulation were studied by reverse transcriptase-PCR and transient transfection assays respectively. We show that among the bile acids tested, taurocholic, taurodeoxycholic, taurochenodeoxycholic and glycocholic acids and sodium glycocholate are strong activators of MUC4 expression and that this regulation occurs at the transcriptional level. By using specific pharmacological inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase, protein kinase A and protein kinase C, we demonstrate that bile acid-mediated up-regulation of MUC4 is promoter-specific and mainly involves activation of phosphatidylinositol 3-kinase. This new mechanism of regulation of MUC4 mucin gene points out an important role for bile acids as key molecules in targeting MUC4 overexpression in early stages of oesophageal carcinogenesis.  (+info)

Diagnostic value of MUC4 immunostaining in distinguishing epithelial mesothelioma and lung adenocarcinoma. (35/148)

The distinction between pleural malignant mesothelioma and pleural infiltration by adenocarcinomas has complex therapeutic and medicolegal implications. Although the panel of adenocarcinoma-associated antibodies and one or two mesothelioma markers is useful in this purpose, most of these antibodies are not totally specific. We determined the diagnostic value of MUC4 immunostaining in this issue. MUC4 gene expression was also studied by in situ hybridization and RT-PCR. MUC4 is a membrane-bound mucin that has been suggested to be implicated in malignant progression in humans and rats. The MUC4 gene is expressed in various normal epithelial tissues of endodermic origin and carcinomas. In the respiratory tract, MUC4 transcripts have been detected in normal respiratory epithelium and lung carcinomas. MUC4 protein was expressed in 32 of 35 (91.4%) lung adenocarcinomas on paraffin-embedded tissue. None of the 41 malignant mesotheliomas nor the 32 cases of benign mesothelial cells expressed MUC4 at the protein and mRNA levels. We conclude that MUC4 is a very specific (100%) and sensitive (91.4%) marker of lung adenocarcinomas on paraffin-embedded tissue that could be useful in diagnostic practice in the distinction between malignant mesothelioma and adenocarcinoma.  (+info)

Expression of mucins in mucoid otitis media. (36/148)

A hallmark of mucoid otitis media (MOM, i.e., chronic otitis media with mucoid effusion) is mucus accumulation in the middle ear cavity, a condition that impairs transduction of sounds in the ear and causes hearing loss. The mucin identities of mucus and the underlying mechanism for the production of mucins in MOM are poorly understood. In this study, we demonstrated that the MUC5B and MUC4 were major mucins in MOM that formed distinct treelike polymers (mucus strands). The MUC5B and MUC4 mRNAs in the middle ear mucosa with MOM were up regulated 5-fold and 6-fold, compared with the controls. This upregulation was accompanied by the extensive proliferation of the MUC5B- and MUC4-producing cells in the middle ear epithelium. Further study indicated that the mucin hyperproduction was significantly linked to CD4+ and CD8+ T cells and/or CD68+ monocyte macrophages. It suggests that MUC5B and MUC4 expression may be regulated by the products of these cells.  (+info)

Differential regulation of membrane-associated mucins in the human ocular surface epithelium. (37/148)

PURPOSE: Membrane-associated mucins present in the apical cells of the ocular surface epithelium (MUC1, -4, and -16) are believed to contribute to the maintenance of a hydrated and wet-surfaced epithelial phenotype. Serum and retinoic acid (RA) have been used to treat drying ocular surface diseases. The goal of this study was to determine whether serum or RA regulates the production of membrane-associated mucins in human conjunctival epithelial cells. METHODS: A telomerase-immortalized human conjunctival epithelial cell line (HCjE) was used. Cells were cultured in serum-free medium to confluence and then cultured with either 10% calf serum or with 100 nM RA for 0 to 72 hours. Conventional RT-PCR was used to determine the expression of retinoic acid receptors (RARs) and quantitative real-time PCR was used to investigate the mRNA expression of MUC1, -4, and -16. Protein levels were assayed by immunoblot analysis, using the antibodies HMFG-2, 1G8, or OC125, which are specific to MUC1, -4 and -16, respectively. To determine whether RA-associated MUC4 mRNA induction is a direct or indirect effect, HCjE cells were treated with RA and the protein synthesis inhibitor cycloheximide (1.0 microg/mL) for 12 hours. RESULTS: MUC1 and -16, but not -4, mRNAs were detectable in HCjE cells grown in serum-free medium. Real-time PCR revealed that MUC4 mRNA was significantly induced by serum 3 hours after its addition, and that MUC1 and MUC16 mRNA levels were significantly upregulated at 72 hours. Western blot analysis demonstrated that the MUC1, -4, and -16 proteins increased over time after addition of serum. Conventional RT-PCR analysis demonstrated that RAR-alpha and -gamma mRNA were expressed in native human conjunctival tissue as well as in the HCjE cells. Treatment with RA upregulated the expression of both MUC4 and -16 mRNA and protein, but MUC1 was unaffected. Because the protein synthesis inhibitor cycloheximide did not prevent the RA-associated induction of MUC4 mRNA, the action of RA on the MUC4 promoter may be direct. CONCLUSIONS: The membrane-associated mucins of the ocular surface epithelia, MUC1, -4, and -16, are differentially regulated by serum and RA in the telomerase-immortalized human conjunctival epithelial cell line. Serum derived from vessels in the conjunctiva may play an important role in mucin regulation in the ocular surface epithelia. These data also support the clinical efficacy of autologous serum and RA application in patients with ocular surface diseases. Furthermore, the data suggest that MUC4 and -16 are particularly important hydrophilic molecules involved in maintenance of a healthy ocular surface.  (+info)

Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. (38/148)

The MUC4 mucin is a high molecular weight membrane-bound glycoprotein. It is aberrantly expressed in pancreatic tumors and tumor cell lines with no detectable expression in the normal pancreas. A progressive increase of MUC4 expression has also been observed in pancreatic intraepithelial neoplasia, suggesting its association with disease development. Here, we investigated the consequences of silencing MUC4 expression in an aggressive and highly metastatic pancreatic tumor cell line CD18/HPAF that expresses high levels of MUC4. The expression of MUC4 was down-regulated by the stable integration of a plasmid-construct expressing antisense-MUC4 RNA. A decrease in MUC4 expression, confirmed by Western blot and immunofluorescence analyses, resulted in diminished growth and clonogenic ability of antisense-MUC4-transfected (EIAS19) cells compared with parental, empty vector (ZEO) and sense transfected (ES6) control cells. In addition, EIAS19 cells displayed a significant decrease in tumor growth and metastatic properties when transplanted orthotopically into the immunodeficient mice. In vitro biological assays for motility, adhesion, and aggregation demonstrated a 3-fold decrease in motility of EIAS19 cells compared with control cells, whereas these cells adhered more and showed an increase in cellular aggregation. Interestingly, MUC4 down-regulation also correlated with the reduced expression of its putative interacting partner, HER2/neu, in antisense-MUC4-transfected cells. In conclusion, the present work demonstrates, for the first time, a direct association of the MUC4 mucin with the metastatic pancreatic cancer phenotype and provides experimental evidence for a functional role of MUC4 in altered growth and behavioral properties of the tumor cell.  (+info)

MUC4 mucin expression in human pancreatic tumours is affected by organ environment: the possible role of TGFbeta2. (39/148)

MUC4 is highly expressed in human pancreatic tumours and pancreatic tumour cell lines, but is minimally or not expressed in normal pancreas or chronic pancreatitis. Here, we investigated the aberrant regulation of MUC4 expression in vivo using clonal human pancreatic tumour cells (CD18/HPAF) grown either orthotopically in the pancreas (OT) or ectopically in subcutaneous tissue (SC) in the nude mice. Histological examination of the OT and SC tumours showed moderately differentiated and anaplastic morphology, respectively. The OT tumour cells showed metastases to distant lymph nodes and faster tumour growth (P<0.01) compared to the SC tumours. The MUC4 transcripts in OT tumours were very high compared to the undetectable levels in SC tumours. The SC tumour cells regained their ability to express MUC4 transcripts after in vitro culture. Immunohistochemical analysis using MUC4-specific polyclonal antiserum confirmed the results obtained by Northern blot analysis. Interestingly, the OT tumours showed expression of TGFbeta2 compared to no expression in SC, suggesting a possible link between MUC4 and TGFbeta2. The MUC4 expression, morphology, and metastasis of human pancreatic tumour cells are regulated by a local host microenvironment. TGFbeta2 may serve as an interim regulator of this function.  (+info)

Mucin expression in pleomorphic adenoma of salivary gland: a potential role for MUC1 as a marker to predict recurrence. (40/148)

BACKGROUND: Pleomorphic adenoma of the salivary gland (PA) is essentially a benign neoplasm. However, patients with recurrent PA are difficult to manage. There are rare reports on useful immunohistochemical markers to detect a high risk of recurrence when the primary lesions are resected. AIMS: To find a new marker to predict the recurrence of PA. METHODS: Primary lesions of PA were collected from nine patients showing subsequent recurrence and from 40 patients without recurrence during at least 10 years of follow up of the disease. Paraffin wax embedded tumour samples of the two groups were examined for the expression profiles of MUC1 (differentially glycosylated forms), MUC2, MUC4, MUC5AC, and MUC6 using immunohistochemistry. Several clinicopathological factors were also examined. RESULTS: In univariate analysis of the factors examined, MUC1/DF3 high expression (more than 30% of the neoplastic cells stained) in the primary lesions was seen more frequently in patients with recurrence (four of nine) than in those without recurrence (three of 40; p = 0.011). Larger tumour size (more than 3.0 cm) of the primary PA was also a significant (p = 0.035) risk factor for the recurrence of PA. In multivariate analysis, only high expression of MUC1/DF3 was found to be a significant independent risk factor for the recurrence of PA (p = 0.021). CONCLUSIONS: Expression of MUC1/DF3 in PA is a useful marker to predict its recurrence. Those patients with PA showing positive MUC1/DF3 expression should be followed up carefully.  (+info)