Temazepam at high altitude reduces periodic breathing without impairing next-day performance: a randomized cross-over double-blind study. (57/155)

The aim of the study was to examine the efficacy and safety of temazepam on nocturnal oxygenation and next-day performance at altitude. A double-blind, randomized, cross-over trial was performed in Thirty-three healthy volunteers. Volunteers took 10 mg of temazepam and placebo in random order on two successive nights soon after arrival at 5000 m, following a 17-day trek from 410 m. Overnight SaO(2) and body movements, and next-day reaction time, maintenance of wakefulness and cognition were assessed. Compared with placebo, temazepam resulted in a reduction in periodic breathing from a median (range) of 16 (0-81.3)% of the night to 9.4 (0-79.6)% (P = 0.016, Wilcoxon's signed-rank test), associated with a small but significant decrease in mean nocturnal SaO(2) from 78 (65-84)% to 76 (64-83)% (P = 0.013). There was no change in sleep latency (P = 0.40) or restlessness (P = 0.30). Temazepam had no adverse effect on next-day reaction time [241 (201-380) ms postplacebo and 242 (204-386) ms post-temazepam], maintenance of wakefulness (seven trekkers failed to maintain 40 min of wakefulness postplacebo, and four post-temazepam), cognition or acute mountain sickness. At high altitude temazepam reduces periodic breathing during sleep without an adverse effect on next-day reaction time, maintenance of wakefulness or cognition. The 2% reduction in mean SaO(2) post-temazepam is likely to be predominantly because of acclimatization, as by chance more trekkers took temazepam on the first night (19 versus 14). We conclude that at high altitude temazepam is effective in reducing periodic breathing, and is safe to use, without any adverse effect upon next-day performance.  (+info)

A lightning strike to the head causing a visual cortex defect with simple and complex visual hallucinations. (58/155)

The case of a 23-year-old mountaineer who was hit by a lightning strike to the occiput causing a large central visual field defect and bilateral tympanic membrane ruptures is described. Owing to extreme agitation, the patient was set to a drug-induced coma for 3 days. After extubation, she experienced simple and complex visual hallucinations for several days, but otherwise recovered largely. Neuropsychological tests revealed deficits in fast visual detection tasks and non-verbal learning, and indicated a right temporal lobe dysfunction, consistent with a right temporal focus on electroencephalography. Four months after the accident, she developed a psychological reaction consisting of nightmares with reappearance of the complex visual hallucinations and a depressive syndrome. Using the European Cooperation for Lightning Detection network, a meteorological system for lightning surveillance, the exact geographical location and nature of the lightning flash were retrospectively retraced.  (+info)

Suspension trauma. (59/155)

Suspension trauma (also known as "harness-induced pathology" or "orthostatic shock while suspended") is the development of presyncopal symptoms and loss of consciousness if the human body is held motionless in a vertical position for a period of time. It has been described in experiments of personal fall protection, and has been implicated in causes of death in mountaineering accidents, but it seems neither to be widely known about nor to have been presented to the medical profession. This article highlights the potential existence of suspension trauma and suggests that more robust medical research using modern harnesses and healthy volunteers would be beneficial to assess whether this is purely a theoretical risk.  (+info)

Caudwell Xtreme Everest: a field study of human adaptation to hypoxia. (60/155)

Caudwell Xtreme Everest (CXE) is a large healthy volunteer field study investigating human adaptation to environmental hypoxia. More than 200 individuals were studied at sea-level and in four laboratories on the trek to Everest Base Camp (5,300 m). Fifteen physicians climbed high on Everest and continued the studies as they ascended; eight of these individuals reached the summit of Everest and succeeded in sampling arterial blood at 8,400 m on their descent. Core measurements included cardiopulmonary exercise testing, neuropsychological assessment, near infra-red spectroscopy of brain and exercising muscle, blood markers and daily recording of simple physiological variables. The goal of CXE is to further our understanding of human adaptation to cellular hypoxia, a fundamental mechanism of injury in critical illness, with the aim of improving the care of critically ill patients.  (+info)

Effects of age and gender on success and death of mountaineers on Mount Everest. (61/155)

Increasing numbers of climbers are attempting Mount Everest, the highest mountain on Earth. We compiled interview data and computed the probabilities of summiting and of dying as a function of climber age and gender (2211 climbers, spring season) for the period of 1990-2005. Men and women had similar odds of summiting and of dying. However, climbers older than 40 years have reduced odds of summiting, and those older than 60 years have increased odds of dying, especially when descending from the summit. On Mount Everest, phenotypic selection appears blind to gender but favours young mountaineers.  (+info)

Alveolar PCO2 oscillations and ventilation at sea level and at high altitude. (62/155)

This study examines the potential for a ventilatory drive, independent of mean PCO2, but depending instead on changes in PCO2 that occur during the respiratory cycle. This responsiveness is referred to here as "dynamic ventilatory sensitivity." The normal, spontaneous, respiratory oscillations in alveolar PCO2 have been modified with inspiratory pulses approximating alveolar PCO2 concentrations, both at sea level and at high altitude (5,000 m, 16,400 ft.). All tests were conducted with subjects exercising on a cycle ergometer at 60 W. The pulses last about half the inspiratory duration and are timed to arrive in the alveoli during early or late inspiration. Differences in ventilation, which then occur in the face of similar end-tidal PCO2 values, are taken to result from dynamic ventilatory sensitivity. Highly significant ventilatory responses (early pulse response greater than late) occurred in hypoxia and normoxia at sea level and after more than 4 days at 5,000 m. The response at high altitude was eliminated by normalizing PO2 and was reduced or eliminated with acetazolamide. No response was present soon after arrival (<4 days) at base camp, 5,000 m, on either of two high-altitude expeditions (BMEME, 1994, and Kanchenjunga, 1998). The largest responses at 5,000 m were obtained in subjects returning from very high altitude (7,100-8,848 m). The present study confirms and extends previous investigations that suggest that alveolar PCO2 oscillations provide a feedback signal for respiratory control, independent of changes in mean PCO2, suggesting that natural PCO2 oscillations drive breathing in exercise.  (+info)

Physiological responses to rock climbing in young climbers. (63/155)

Key questions regarding the training and physiological qualities required to produce an elite rock climber remain inadequately defined. Little research has been done on young climbers. The aim of this paper was to review literature on climbing alongside relevant literature characterising physiological adaptations in young athletes. Evidence-based recommendations were sought to inform the training of young climbers. Of 200 studies on climbing, 50 were selected as being appropriate to this review, and were interpreted alongside physiological studies highlighting specific common development growth variables in young climbers. Based on injury data, climbers younger than 16 years should not participate in international bouldering competitions and intensive finger strength training is not recommended. The majority of climbing foot injuries result from wearing too small or unnaturally shaped climbing shoes. Isometric and explosive strength improvements are strongly associated with the latter stages of sexual maturation and specific ontogenetic development, while improvement in motor abilities declines. Somatotyping that might identify common physical attributes in elite climbers of any age is incomplete. Accomplished adolescent climbers can now climb identical grades and compete against elite adult climbers aged up to and >40 years. High-intensity sports training requiring leanness in a youngster can result in altered and delayed pubertal and skeletal development, metabolic and neuroendocrine aberrations and trigger eating disorders. This should be sensitively and regularly monitored. Training should reflect efficacious exercises for a given sex and biological age.  (+info)

Zaleplon and zolpidem objectively alleviate sleep disturbances in mountaineers at a 3,613 meter altitude. (64/155)

STUDY OBJECTIVES: To assess the effects of zolpidem and zaleplon on nocturnal sleep and breathing patterns at altitude, as well as on daytime attention, fatigue, and sleepiness. DESIGN: Double-blind, randomized, placebo-controlled, cross-over trial. SETTING: 3 day and night alpine expedition at 3,613 m altitude. PARTICIPANTS: 12 healthy male trekkers. PROCEDURE: One week spent at 1,000 m altitude (baseline control), followed by 3 periods of 3 consecutive treatment nights (N1-3) at altitude, to test 10 mg zolpidem, 10 mg zaleplon, and placebo given at 21:45. MEASURES: Sleep from EEG, actigraphy and sleep logs; overnight arterial saturation in oxygen (SpO2) from infrared oximetry; daytime attention, fatigue and sleepiness from a Digit Symbol Substitution Test, questionnaires, and sleep logs; acute mountain sickness (AMS) from the Lake Louise questionnaire. RESULTS: Compared to baseline control, sleep at altitude was significantly impaired in placebo subjects as shown by an increase in the amount of Wakefulness After Sleep Onset (WASO) from 17 +/- 8 to 36 +/- 13 min (P<0.05) and in arousals from 5 +/- 3 to 20 +/- 8 (P<0.01). Slow wave sleep (SWS) and stage 4 respectively decreased from 26.7% +/- 5.8% to 20.6% +/- 5.8% of total sleep time (TST) and from 18.2% +/- 5.2% to 12.4% +/- 3.1% TST (P<0.05 and P<0.001, respectively). Subjects also complained from a feeling of poor sleep quality combined with numerous 02 desaturation episodes. Subjective fatigue and AMS score were increased. Compared to placebo control, WASO decreased by approximately 6 min (P<0.05) and the sleep efficiency index increased by 2% (P<0.01) under zaleplon and zolpidem, while SWS and stage 4 respectively increased to 22.5% +/- 5.4% TST (P<0.05) and to 15.0% +/- 3.4% TST (P<0.0001) with zolpidem only; both drugs further improved sleep quality. No adverse effect on nighttime SpO2, daytime attention level, alertness, or mood was observed under either hypnotic. AMS was also found to be reduced under both medications. CONCLUSIONS: Both zolpidem and zaleplon have positive effects on sleep at altitude without adversely affecting respiration, attention, alertness, or mood. Hence, they may be safely used by climbers.  (+info)