Comparative analysis of cell distribution in the pigment epithelium and the visual cell layer of chimaeric mice. (1/1468)

In chimaeras of both rdrdCC in equilibrium ++ cc and rdrdcc in equilibrium ++CC combinations two types of distribution were observed. In a majority of the chimaeras both retinal layers were chimaeric; whereas in a few cases the pigment epithelium was chimaeric but the visual cell layer was made of ++ cells only. No spatial relation was observed in the distribution of the cells in the two layers. The two eyes of the individuals were nearly always identical with regard to occurrence of chimaerism in the two layers. The findings are discussed in the light of the possible site and mode of expression of the rd gene.  (+info)

Analysis of spinocerebellar ataxia type 2 gene and haplotype analysis: (CCG)1-2 polymorphism and contribution to founder effect. (2/1468)

Spinocerebellar ataxia type 2 is a familial spinocerebellar ataxia with autosomal dominant inheritance. The gene responsible was recently cloned and this disorder was found to be the result of a CAG expansion in its open reading frame. We analysed 13 SCA2 patients in seven unrelated families in Gunma Prefecture, Japan. In four of the seven families, we detected CCG or CCGCCG interruptions in only the expanded alleles. Cosegregation of these polymorphisms with SCA2 patients was established within each family. Together with the results of haplotype analyses, we considered that at least two founders were present in our area and that these (CCG)1-2 polymorphisms may make analysis of founder effects easier. By sequencing analysis we found that although the number of the long CAG repeat varied in each subclone of expanded alleles, these polymorphisms did not change their configuration. This finding suggests that CCG or CCGCCG sequences are stable when surrounded by the long CAG repeat and a single CAG. Moreover, the presence of these polymorphisms may lead to miscounting the repeat size by conventional estimation using a size marker such as an M13 sequencing ladder. Therefore we should consider these polymorphisms and accurately determine the repeat size by sequencing.  (+info)

Dual role of extramacrochaetae in cell proliferation and cell differentiation during wing morphogenesis in Drosophila. (3/1468)

The Extramacrochaetae (emc) gene encodes a transcription factor with an HLH domain without the basic region involved in interaction with DNA present in other proteins that have this domain. EMC forms heterodimers with bHLH proteins preventing their binding to DNA, acting as a negative regulator. The function of emc is required in many developmental processes during the development of Drosophila, including wing morphogenesis. Mitotic recombination clones of both null and gain-of-function alleles of emc, indicate that during wing morphogenesis, emc participates in cell proliferation within the intervein regions (vein patterning), as well as in vein differentiation. The study of relationships between emc and different genes involved in wing development reveal strong genetic interactions with genes of the Ras signalling pathway (torpedo, vein, veinlet and Gap), blistered, plexus and net, in both adult wing phenotypes and cell behaviour in genetic mosaics. These interactions are also analyzed as variations of emc expression patterns in mutant backgrounds for these genes. In addition, cell proliferation behaviour of emc mutant cells varies depending on the mutant background. The results show that genes of the Ras signalling pathway are co-operatively involved in the activity of emc during cell proliferation, and later antagonistically during cell differentiation, repressing EMC expression.  (+info)

Germ-line mosaicism in tuberous sclerosis: how common? (4/1468)

Two-thirds of cases of tuberous sclerosis complex (TSC) are sporadic and usually are attributed to new mutations, but unaffected parents sometimes have more than one affected child. We sought to determine how many of these cases represent germ-line mosaicism, as has been reported for other genetic diseases. In our sample of 120 families with TSC, 7 families had two affected children and clinically unaffected parents. These families were tested for mutations in the TSC1 and TSC2 genes, by Southern blotting and by single-strand conformational analysis. Unique variants were detected in six families. Each variant was present and identical in both affected children of a family but was absent in both parents and the unaffected siblings. Sequencing of the variants yielded two frameshift mutations, one missense mutation, and two nonsense mutations in TSC2 and one nonsense mutation in TSC1. To determine which parent contributed the affected gametes, the families were analyzed for linkage to TSC1 and TSC2, by construction of haplotypes with markers flanking the two genes. Linkage analysis and loss-of-heterozygosity studies indicated maternal origin in three families, paternal origin in one family, and either being possible in two families. To evaluate the possibility of low-level somatic mosaicism for TSC, DNA from lymphocytes of members of the six families were tested by allele-specific PCR. In all the families, the mutant allele was detected only in the known affected individuals. We conclude that germ-line mosaicism was present in five families with mutations in the TSC2 gene and in one family with the causative mutation in the TSC1 gene. The results have implications for genetic counseling of families with seemingly sporadic TSC.  (+info)

Recurrence of Marfan syndrome as a result of parental germ-line mosaicism for an FBN1 mutation. (5/1468)

Mutations in the FBN1 gene cause Marfan syndrome (MFS), a dominantly inherited connective tissue disease. Almost all the identified FBN1mutations have been family specific, and the rate of new mutations is high. We report here a de novo FBN1mutation that was identified in two sisters with MFS born to clinically unaffected parents. The paternity and maternity were unequivocally confirmed by genotyping. Although one of the parents had to be an obligatory carrier for the mutation, we could not detect the mutation in the leukocyte DNA of either parent. To identify which parent was a mosaic for the mutation we analyzed several tissues from both parents, with a quantitative and sensitive solid-phase minisequencing method. The mutation was not, however, detectable in any of the analyzed tissues. Although the mutation could not be identified in a sperm sample from the father or in samples of multiple tissue from the mother, we concluded that the mother was the likely mosaic parent and that the mutation must have occurred during the early development of her germ-line cells. Mosaicism confined to germ-line cells has rarely been reported, and this report of mosaicism for the FBN1 mutation in MFS represents an important case, in light of the evaluation of the recurrence risk in genetic counseling of families with MFS.  (+info)

Chromosome abnormalities in human embryos. (6/1468)

The presence of numerical chromosome abnormalities in human embryos was studied using fluorescence in-situ hybridization with four or more chromosome-specific probes. When most cells of an embryo are analysed, this technique allows differentiation to be made between aneuploidy, mosaicism, haploidy and polyploidy. Abnormal types of fertilization, such as unipronucleated, tripronucleated zygotes and zygotes with uneven pronuclei, were studied using this technique. We have found a strong correlation between some types of dysmorphism with chromosomal abnormalities. In addition, the more impaired the development of an embryo, the more chromosomal abnormalities were detected in those embryos. Maternal age and other factors were linked to an increase in chromosome abnormalities (hormonal regimes, temperature changes), but not to intracytoplasmic sperm injection.  (+info)

Identification of mutations that cause cell migration defects in mosaic clones. (7/1468)

Cell movement is an important feature of animal development, wound healing and tumor metastasis; however, the mechanisms underlying cell motility remain to be elucidated. To further our understanding, it would be useful to identify all of the proteins that are essential for a cell to migrate, yet such information is not currently available for any cell type. We have carried out a screen for mutations affecting border cell migration in Drosophila. Mutations that cause defects in mosaic clones were identified, so that genes that are also required for viability could be detected. From 6000 mutagenized lines, 20 mutations on chromosome 2R were isolated that cause defects in border cell position. One of the mutations was dominant while all of the recessive mutations appeared to be homozygous lethal. This lethality was used to place the mutations into 16 complementation groups. Many of the mutations failed to complement cytologically characterized deficiencies, allowing their rapid mapping. Mutations in three loci altered expression of a marker gene in the border cells, whereas the remaining mutations did not. One mutation, which caused production of supernumerary border cells, was found to disrupt the costal-2 locus, indicating a role for Hedgehog signaling in border cell development. This screen identified many new loci required for border cell migration and our results suggest that this is a useful approach for elucidating the mechanisms involved in cell motility.  (+info)

Dicentric X isochromosomes in man. (8/1468)

Four cases of Turner's syndrome are presented in which an apparent X isochromosome i(Xq) has been found to possess two regions of centromeric heterochromatin. It is suggested that these chromosomes were isodicentric structures capable of functioning as monocentric elements as a result of the inactivation of one centromere. The prevalence of mosaicism is believed to be a consequence of the dicentric nature of these chromosomes, and it is considered possible that a high proportion of X isochromosmes are structurally dicentric. Banding patterns showed that the exchange site involved in the formation of the dicentric chromosome was different in at least three of the cases.  (+info)