Delta 9-fatty acid desaturase from arachidonic acid-producing fungus. Unique gene sequence and its heterologous expression in a fungus, Aspergillus. (1/52)

Based on the sequence information for delta 9-desaturase genes (from rat, mouse and yeast), which are involved in the desaturation of palmitic acid and stearic acid to palmitoleic acid and oleic acid, respectively, the corresponding cDNA and genomic gene were cloned from the fungal strain, Mortierella alpina 1S-4, which industrially produces arachidonic acid. There was a cytochrome b5-like domain linked to the carboxyl terminus of this Mortierella desaturase, as also seen in the yeast delta 9-desaturase. The Mortierella delta 9-desaturase genomic gene had only one intron, in which a novel phenomenon was observed: there was a GC-end at the 5'-terminus instead of a GT-end that is, in general, found in introns of eukaryotic genes. The full-length cDNA clone was expressed under the control of an amyB promoter in a filamentous fungus, Aspergillus oryzae, resulting in drastic changes in the fatty acid composition in the transformant cells; the contents of palmitoleic acid (16:1) and oleic acid (18:1) increased significantly, with accompanying decreases in palmitic acid (16:0) and stearic acid (18:0). These changes were controlled by the addition of maltose as a carbon source to the medium. Also, the expression of the gene caused a significant change in the lipid composition in the Aspergillus transformant. Genomic Southern blot analysis of the transformant with the Mortierella delta 9-desaturase gene as a probe confirmed the integration of this gene into the genome of A. oryzae.  (+info)

Identification of Delta12-fatty acid desaturase from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. (2/52)

Based on the sequence information for the omega3-desaturase genes (from Brassica napus and Caenorhabditis elegans), which are involved in the desaturation of linoleic acid (Delta9, Delta12-18 : 2) to alpha-linolenic acid (Delta9, Delta12, Delta15-18 : 3), a cDNA was cloned from the filamentous fungal strain, Mortierella alpina 1S-4, which is used industrially to produce arachidonic acid. Homology analysis with protein databases revealed that the amino acid sequence showed 43.7% identity as the highest match with the microsomal omega6-desaturase (from Glycine max, soybean), whereas it exhibited 38.9% identity with the microsomal omega3-desaturase (from soybean). The evolutionary implications of these enzymes will be discussed. The cloned cDNA was confirmed to encode a Delta12-desaturase, which was involved in the desaturation of oleic acid (Delta9-18 : 1) to linoleic acid, by its expression in both the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Analysis of the fatty acid composition of yeast and fungus transformants demonstrated that linoleic acid (which was not contained in the control strain of S. cerevisiae) was accumulated in the yeast transformant and that the fungal transformant contained a large amount of linoleic acid (71.9%). Genomic Southern blot analysis of the transformants with the Mortierella Delta12-desaturase gene as a probe confirmed integration of this gene into the genome of A. oryzae. The M. alpina 1S-4 Delta12-desaturase is the first example of a cloned nonplant Delta12-desaturase.  (+info)

Lipid bodies and lipid body formation in an oleaginous fungus, Mortierella ramanniana var. angulispora. (3/52)

Mortierella ramanniana var. angulispora accumulates triacylglycerol (TG) in lipid bodies. Studies on lipid transport into lipid bodies are essential for elucidating mechanisms of lipid body formation. We used fluorescent dyes and fluorescent lipid analogs to visualize lipid body formation with a confocal laser scanning microscope. Different sizes of lipid bodies were stained by Nile red, a lipid body marker - one with a diameter of about 1 micrometer and the other with a diameter of about 2-3 micrometers. Lipid bodies matured into larger ones with culture. To metabolically monitor lipid bodies, we used 1-palmitoyl, 2-[5-(5,7-dimethyl boron dipyrromethene difluoride)-1-pentanoyl]-phosphatidic acid (C5-DMB-PA), and C5-DMB-phosphatidylcholine (C5-DMB-PC). These were taken up into fungal cells and incorporated into intracellular organelles at 30 degrees C. C5-DMB-PA was quickly incorporated into lipid bodies while C5-DMB-PC was initially incorporated into internal membranes, presumably endoplasmic reticulum membranes, and fluorescence was then gradually transported into lipid bodies. The transport of fluorescent lipids accompanied their metabolism into diacylglycerol (DG) and TG, which, taken together with the fluorescence distribution, suggested that conversion to TG was not necessary for transport into lipid bodies. It is likely that the synthesized DG was mainly located in lipid bodies and the conversion to TG took place in lipid bodies. C5-DMB-PA and C5-DMB-PC were converted to DG and TG in the membrane and lipid body fractions of this fungus, which agreed with in vivo metabolism of these fluorescent lipids and in vitro enzyme activity related to PA and PC metabolism. These results indicate that transport and metabolism of C5-DMB-PA and C5-DMB-PC represent two different routes for lipid body formation in this fungus.  (+info)

Genetic analysis of cytochrome b5 from arachidonic acid-producing fungus, Mortierella alpina 1S-4: cloning, RNA editing and expression of the gene in Escherichia coli, and purification and characterization of the gene product. (4/52)

Information on the amino acid sequences of the internal peptide fragments of cytochrome b5 from Mortierella hygrophila was used to prepare synthetic oligonucleotides as primers for the polymerase chain reaction. A 100-base DNA fragment was thus amplified, by using a genomic gene from Mortierella alpina 1S-4 as a template, which produced polyunsaturated fatty acids such as arachidonic acid. The amplified DNA fragment was used as the probe to clone both a 523-base cDNA fragment and a 2.1-kilobase SalI-NruI genomic fragment coding for the whole M. alpina 1S-4 cytochrome b5. On the basis of nucleotide sequences of both cytochrome b5 genomic gene and cDNA, the genomic cytochrome b5 gene was found to consist of four exons and three introns. A novel type of RNA editing, in which the cDNA included either guanine insertion or adenine-->guanine substitution at one base upstream of poly(A), was interestingly observed. The deduced amino acid sequence of M. alpina 1S-4 cytochrome b5 showed significant similarities with those of cytochrome b5s from other organisms such as rat, chicken, and yeast. The soluble form of the cytochrome b5 gene was expressed to 16% of the total soluble protein in Escherichia coli. The holo-cytochrome b5 accounted for 8% of the total cytochrome b5 in the transformants. The purified cytochrome b5 showed the oxidized and reduced absorbance spectra characteristic of fungal microsomal cytochrome b5.  (+info)

Purification and characterization of recombinant Mortierella vinacea alpha-galactosidases I and II expressed in Saccharomyces cerevisiae. (5/52)

The cDNAs coding for Mortierella vinacea alpha-galactosidases I and II were expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. The recombinant enzymes purified to homogeneity from the culture filtrate were glycosylated, and had properties identical to those of the native enzymes except for improving the heat stability of alpha-galactosidase II and decreasing the specific activities of both enzymes.  (+info)

The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. (6/52)

The hypothesis is advanced that NADP(+)-malic enzyme (ME; EC 1.1.1.40) is an important activity in regulating the extent of lipid accumulation in filamentous fungi. In Mucor circinelloides, a fungus capable of accumulating only 25% (w/w, dry wt) lipid, even under the most propitious conditions, ME disappears 15-20 h after nitrogen exhaustion, coincident with the cessation of lipid accumulation. In contrast, ME in Mortierella alpina, a fungus capable of accumulating 50% (w/w, dry wt) lipid, remains active for over 60 h after N-exhaustion during which time lipid accumulation continues. No other enzyme activity studied, including the lipogenic enzymes acetyl-CoA carboxylase, fatty acid synthase, diacyglycerol acyltransferase, ATP: citrate lyase and the NADPH-generating enzymes glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and NADP+:isocitrate dehydrogenase, demonstrated any correlation with the accumulation of storage lipid in either fungus. Full activity of ME is restored in Mr. circinelloides within 4 h by adding NH4+ to the cultures, but this is prevented by adding cycloheximide as an inhibitor of protein synthesis. This suggests that the decrease in ME activity occurs due to down-regulation of the ME gene.  (+info)

Identification of an NADH-cytochrome b(5) reductase gene from an arachidonic acid-producing fungus, Mortierella alpina 1S-4, by sequencing of the encoding cDNA and heterologous expression in a fungus, Aspergillus oryzae. (7/52)

Based on the sequence information for bovine and yeast NADH-cytochrome b(5) reductases (CbRs), a DNA fragment was cloned from Mortierella alpina 1S-4 after PCR amplification. This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 298 amino acid residues which show marked sequence similarity to CbRs from other sources, such as yeast (Saccharomyces cerevisiae), bovine, human, and rat CbRs. These results suggested that this cDNA is a CbR gene. The results of a structural comparison of the flavin-binding beta-barrel domains of CbRs from various species and that of the M. alpina enzyme suggested that the overall barrel-folding patterns are similar to each other and that a specific arrangement of three highly conserved amino acid residues (i.e., arginine, tyrosine, and serine) plays a role in binding with the flavin (another prosthetic group) through hydrogen bonds. The corresponding genomic gene, which was also cloned from M. alpina 1S-4 by means of a hybridization method with the above probe, had four introns of different sizes. These introns had GT at the 5' end and AG at the 3' end, according to a general GT-AG rule. The expression of the full-length cDNA in a filamentous fungus, Aspergillus oryzae, resulted in an increase (4.7 times) in ferricyanide reduction activity involving the use of NADH as an electron donor in the microsomes. The M. alpina CbR was purified by solubilization of microsomes with cholic acid sodium salt, followed by DEAE-Sephacel, Mono-Q HR 5/5, and AMP-Sepharose 4B affinity column chromatographies; there was a 645-fold increase in the NADH-ferricyanide reductase specific activity. The purified CbR preferred NADH over NADPH as an electron donor. This is the first report of an analysis of this enzyme in filamentous fungi.  (+info)

Two fatty acid delta9-desaturase genes, ole1 and ole2, from Mortierella alpina complement the yeast ole1 mutation. (8/52)

Genes encoding two distinct fatty acid delta9-desaturases were isolated from strains of the oleaginous fungus Mortierella alpina. Two genomic sequences, delta9-1 and delta9-2, each containing a single intron, were cloned from strain CBS 528.72 while one cDNA clone, LM9, was isolated from strain CBS 210.32. The delta9-1 gene encoded a protein of 445 aa which shared 99% identity with the LM9 gene product. These proteins also showed 40-60% identity to the delta9-desaturases (Ole1p) of other fungi and contained the three conserved histidine boxes, C-terminal cytochrome b5 fusion and transmembrane domains characteristic of endoplasmic reticulum membrane-bound delta9-desaturases. LM9 and delta9-1 are therefore considered to represent the same gene (ole1). The ole1 gene was transcriptionally active in all M. alpina strains tested and its function was confirmed by complementation of the Saccharomyces cerevisiae ole1 mutation. Fatty acid analysis of yeast transformants expressing the CBS 210.32 ole1 gene showed an elevated level of oleic acid (18:1) compared to palmitoleic acid (16:1), the major fatty acid component of wild-type S. cerevisiae. This indicated that the M. alpina delta9-desaturase had a substrate preference for stearic acid (18:0) rather than palmitic acid (16:0). Genomic clone delta9-2 (ole2) also encoded a protein of 445 aa which had 86% identity to the delta9-1 and LM9 proteins and whose ORF also complemented the yeast ole1 mutation. The transcript from this gene could only be detected in one of the six M. alpina strains tested, suggesting that its expression may be strain-specific or induced under certain physiological conditions.  (+info)