An unusual form of purifying selection in a sperm protein. (1/35)

Protamines are small, highly basic DNA-binding proteins found in the sperm of animals. Interestingly, the proportion of arginine residues in one type of protamine, protamine P1, is about 50% in mammals. Upon closer examination, it was found that both the total number of amino acids and the positions of arginine residues have changed considerably during the course of mammalian evolution. This evolutionary pattern suggests that protamine P1 is under an unusual form of purifying selection, in which the high proportion of arginine residues is maintained but the positions may vary. In this case, we would expect that the rate of nonsynonymous substitution is not particularly low compared with that of synonymous substitution, despite purifying selection. We would also expect that the selection for a high arginine content results in a high frequency of the nucleotide G in the coding region of this gene, because all six arginine codons contain at least one G. These expectations were confirmed in our study of mammalian protamine genes. Analysis of nonmammalian vertebrate genes also showed essentially the same patterns of evolutionary changes, suggesting that this unusual form of purifying selection has been active since the origin of bony vertebrates. The protamine gene of an insect species shows similar patterns, although its purifying selection is less intense. These observations suggest that arginine-rich selection is a general feature of protamine evolution. The driving force for arginine-rich selection appears to be the DNA-binding function of protamine P1 and an interaction with a protein kinase in the fertilized egg.  (+info)

A covarion-based method for detecting molecular adaptation: application to the evolution of primate mitochondrial genomes. (2/35)

A new method for detecting site-specific variation of evolutionary rate (the so-called covarion process) from protein sequence data is proposed. It involves comparing the maximum-likelihood estimates of the replacement rate of an amino acid site in distinct subtrees of a large tree. This approach allows detection of covarion at the gene or the amino acid levels. The method is applied to mammalian-mitochondrial-protein sequences. Significant covarion-like evolution is found in the (simian) primate lineage: some amino acid positions are fast-evolving (i.e. unconstrained) in non-primate mammals but slow-evolving (i.e. highly constrained) in primates, and some show the opposite pattern. Our results indicate that the mitochondrial genome of primates reached a new peak of the adaptive landscape through positive selection.  (+info)

Independent origins of middle ear bones in monotremes and therians. (3/35)

A dentary of the oldest known monotreme, the Early Cretaceous Teinolophos trusleri, has an internal mandibular trough, which in outgroups to mammals houses accessory jaw bones, and probable contact facets for angular, coronoid, and splenial bones. Certain of these accessory bones were detached from the mandible to become middle ear bones in mammals. Evidence that the angular (homologous with the mammalian ectotympanic) and the articular and prearticular (homologous with the mammalian malleus) bones retained attachment to the lower jaw in a basal monotreme indicates that the definitive mammalian middle ear evolved independently in living monotremes and therians (marsupials and placentals).  (+info)

Comparative sequencing provides insights about the structure and conservation of marsupial and monotreme genomes. (4/35)

Sequencing and comparative analyses of genomes from multiple vertebrates are providing insights about the genetic basis for biological diversity. To date, these efforts largely have focused on eutherian mammals, chicken, and fish. In this article, we describe the generation and study of genomic sequences from noneutherian mammals, a group of species occupying unusual phylogenetic positions. A large sequence data set (totaling >5 Mb) was generated for the same orthologous region in three marsupial (North American opossum, South American opossum, and Australian tammar wallaby) and one monotreme (platypus) genomes. These ancient mammalian genomes are characterized by unusual architectural features with respect to G + C and repeat content, as well as compression relative to human. Approximately 14% and 34% of the human sequence forms alignments with the orthologous sequence from platypus and the marsupials, respectively; these numbers are distinctly lower than that observed with nonprimate eutherian mammals (45-70%). The alignable sequences between human and each marsupial species are not completely overlapping (only 80% common to all three species) nor are the platypus-alignable sequences completely contained within the marsupial-alignable sequences. Phylogenetic analysis of synonymous coding positions reveals that platypus has a notably long branch length, with the human-platypus substitution rate being on average 55% greater than that seen with human-marsupial pairs. Finally, analyses of the major mammalian lineages reveal distinct patterns with respect to the common presence of evolutionarily conserved vertebrate sequences. Our results confirm that genomic sequence from noneutherian mammals can contribute uniquely to unraveling the functional and evolutionary histories of the mammalian genome.  (+info)

Marsupials and monotremes sort genome treasures from junk. (5/35)

A recent landmark paper demonstrates the unique contribution of marsupials and monotremes to comparative genome analysis, filling an evolutionary gap between the eutherian mammals (including humans) and more distant vertebrate species.  (+info)

The thalamus of the monotremes: cyto- and myeloarchitecture and chemical neuroanatomy. (6/35)

Echidna and platypus brains were sectioned and stained by Nissl or myelin stains or immunocytochemically for calcium-binding proteins, gamma aminobutyric acid (GABA) or other antigens. Cyto- and myeloarchitecture revealed thalami that are fundamentally mammalian in organization, with the three principal divisions of the thalamus (epithalamus, dorsal thalamus and ventral thalamus) identifiable as in marsupials and eutherian mammals. The dorsal thalamus exhibits more nuclear parcellation than hitherto described, but lack of an internal medullary lamina, caused by splaying out of afferent fibre tracts that contribute to it in other mammals, makes identification of anterior, medial and intralaminar nuclear groups difficult. Differentiation of the ventral nuclei is evident with the ventral posterior nucleus of the platypus enormously expanded into the interior of the cerebral hemisphere, where it adopts a relationship to the striatum not seen in other mammals. Other nuclei such as the lateral dorsal become identifiable by expression of patterns of calcium-binding proteins identical to those found in other mammals. GABA cells are present in the ventral and dorsal thalamic nuclei, and in the ventral thalamus form a remarkable continuum with GABA cells of the two segments of the globus pallidus and pars reticulata of the substantia nigra.  (+info)

Genomic evidence for independent origins of beta-like globin genes in monotremes and therian mammals. (7/35)

 (+info)

Loss of egg yolk genes in mammals and the origin of lactation and placentation. (8/35)

 (+info)